def __init__()

in ResNetBasic.py [0:0]


    def __init__(self, indim, outdim, half_res):
        super(SimpleBlock, self).__init__()
        self.indim = indim
        self.outdim = outdim
        self.C1 = nn.Conv2d(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False)
        self.relu1 = nn.ReLU(inplace=True)
        self.relu2 = nn.ReLU(inplace=True)
        self.BN1 = nn.BatchNorm2d(outdim)
        self.C2 = nn.Conv2d(outdim, outdim,kernel_size=3, padding=1,bias=False)
        self.BN2 = nn.BatchNorm2d(outdim)

        self.parametrized_layers = [self.C1, self.C2, self.BN1, self.BN2]

        self.half_res = half_res

        # if the input number of channels is not equal to the output, then need a 1x1 convolution
        if indim!=outdim:
            self.shortcut = nn.Conv2d(indim, outdim, 1, 2 if half_res else 1, bias=False)
            self.parametrized_layers.append(self.shortcut)
            self.BNshortcut = nn.BatchNorm2d(outdim)
            self.parametrized_layers.append(self.BNshortcut)
            self.shortcut_type = '1x1'
        else:
            self.shortcut_type = 'identity'

        for layer in self.parametrized_layers:
            init_layer(layer)