in maskrcnn_benchmark/modeling/roi_heads/box_head/roi_box_feature_extractors.py [0:0]
def __init__(self, cfg, in_channels):
super(FPNXconv1fcFeatureExtractor, self).__init__()
resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES
sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
pooler = Pooler(
output_size=(resolution, resolution),
scales=scales,
sampling_ratio=sampling_ratio,
)
self.pooler = pooler
use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN
conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM
num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS
dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION
xconvs = []
for ix in range(num_stacked_convs):
xconvs.append(
nn.Conv2d(
in_channels,
conv_head_dim,
kernel_size=3,
stride=1,
padding=dilation,
dilation=dilation,
bias=False if use_gn else True
)
)
in_channels = conv_head_dim
if use_gn:
xconvs.append(group_norm(in_channels))
xconvs.append(nn.ReLU(inplace=True))
self.add_module("xconvs", nn.Sequential(*xconvs))
for modules in [self.xconvs,]:
for l in modules.modules():
if isinstance(l, nn.Conv2d):
torch.nn.init.normal_(l.weight, std=0.01)
if not use_gn:
torch.nn.init.constant_(l.bias, 0)
input_size = conv_head_dim * resolution ** 2
representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM
self.fc6 = make_fc(input_size, representation_size, use_gn=False)
self.out_channels = representation_size