in shapenet/evaluation/eval.py [0:0]
def evaluate_test_p2m(model, data_loader):
"""
This function evaluates the model on the dataset defined by data_loader.
The metrics reported are described in Table 1 of our paper, following previous
reported approaches (like Pixel2Mesh - p2m), where meshes are
rescaled by a factor of 0.57. See the paper for more details.
"""
assert comm.is_main_process()
device = torch.device("cuda:0")
# evaluation
class_names = {
"02828884": "bench",
"03001627": "chair",
"03636649": "lamp",
"03691459": "speaker",
"04090263": "firearm",
"04379243": "table",
"04530566": "watercraft",
"02691156": "plane",
"02933112": "cabinet",
"02958343": "car",
"03211117": "monitor",
"04256520": "couch",
"04401088": "cellphone",
}
num_instances = {i: 0 for i in class_names}
chamfer = {i: 0 for i in class_names}
normal = {i: 0 for i in class_names}
f1_1e_4 = {i: 0 for i in class_names}
f1_2e_4 = {i: 0 for i in class_names}
num_batch_evaluated = 0
for batch in data_loader:
batch = data_loader.postprocess(batch, device)
imgs, meshes_gt, _, _, _, id_strs = batch
sids = [id_str.split("-")[0] for id_str in id_strs]
for sid in sids:
num_instances[sid] += 1
with inference_context(model):
voxel_scores, meshes_pred = model(imgs)
# NOTE that for the F1 thresholds we take the square root of 1e-4 & 2e-4
# as `compare_meshes` returns the euclidean distance (L2) of two pointclouds.
# In Pixel2Mesh, the squared L2 (L2^2) is computed instead.
# i.e. (L2^2 < τ) <=> (L2 < sqrt(τ))
cur_metrics = compare_meshes(
meshes_pred[-1], meshes_gt, scale=0.57, thresholds=[0.01, 0.014142], reduce=False
)
cur_metrics["verts_per_mesh"] = meshes_pred[-1].num_verts_per_mesh().cpu()
cur_metrics["faces_per_mesh"] = meshes_pred[-1].num_faces_per_mesh().cpu()
for i, sid in enumerate(sids):
chamfer[sid] += cur_metrics["Chamfer-L2"][i].item()
normal[sid] += cur_metrics["AbsNormalConsistency"][i].item()
f1_1e_4[sid] += cur_metrics["F1@%f" % 0.01][i].item()
f1_2e_4[sid] += cur_metrics["F1@%f" % 0.014142][i].item()
num_batch_evaluated += 1
logger.info("Evaluated %d / %d batches" % (num_batch_evaluated, len(data_loader)))
vis_utils.print_instances_class_histogram_p2m(
num_instances,
class_names,
{"chamfer": chamfer, "normal": normal, "f1_1e_4": f1_1e_4, "f1_2e_4": f1_2e_4},
)