def __init__()

in models/encoders.py [0:0]


    def __init__(self, classes: int = 128, heads: int = 64, expression_dim: int = 128, audio_dim: int = 128,
                 model_name: str = 'fusion_model'):
        """
        :param classes: number of classes for the categorical latent embedding
        :param heads: number of heads for the categorical latent embedding
        :param expression_dim: size of the latent expression embedding before quantization through Gumbel softmax
        :param audio_dim: size of the latent audio embedding
        :param model_name: name of the model, used to load and save the model
        """
        super().__init__(model_name)
        self.classes = classes
        self.heads = heads

        latent_dim = 256
        self.mlp = th.nn.Sequential(
            th.nn.Linear(expression_dim + audio_dim, latent_dim),
            th.nn.LeakyReLU(negative_slope=0.2, inplace=True),
            th.nn.Linear(latent_dim, latent_dim),
            th.nn.LeakyReLU(negative_slope=0.2, inplace=True),
            th.nn.Linear(latent_dim, heads * classes)
        )