def forward()

in models/context_model.py [0:0]


    def forward(self, context: th.Tensor, audio: th.Tensor = None):
        """
        :param context: B x T x heads x ch_in Tensor
        :param audio: B x T x audio_dim Tensor
        :return: B x T x heads x ch_out Tensor
        """
        B, T = context.shape[0], context.shape[1]
        context = context.view(B, T, -1).permute(0, 2, 1).contiguous()

        # current context time step: masked along head axis
        y = F.conv1d(context, self.masked_linear.weight * self.mask, bias=self.masked_linear.bias)

        # current audio time step: no masking
        if audio is not None:
            audio = audio.permute(0, 2, 1).contiguous()
            audio = self.unmasked_linear(audio)
            y = y + audio

        # historic time steps
        if self.kernel_size > 0:
            h = F.pad(context[:, :, :-1], [self.dilation * (self.kernel_size - 1) + 1, 0])
            y = y + self.historic(h)

        y = y.permute(0, 2, 1).contiguous().view(B, T, self.heads, self.ch_out)

        return y