in models/densenet_efficient_multi_gpu.py [0:0]
def __init__(self, shared_alloc, num_input_features, growth_rate, bn_size, drop_rate):
super(_DenseLayer, self).__init__()
self.shared_alloc = shared_alloc
self.drop_rate = drop_rate
self.bn_size = bn_size
if bn_size > 0:
self.efficient = EfficientDensenetBottleneck(shared_alloc,
num_input_features, bn_size * growth_rate)
self.bn = nn.BatchNorm2d(bn_size * growth_rate)
self.relu = nn.ReLU(inplace=True)
self.conv = nn.Conv2d(bn_size * growth_rate, growth_rate,
kernel_size=3, stride=1, padding=1, bias=False)
else:
self.efficient = EfficientDensenetBottleneck(shared_alloc,
num_input_features, growth_rate)
self.conv1 = nn.Conv2d(num_input_features, growth_rate,
kernel_size=3, stride=1, padding=1, bias=False)