def get_parser()

in tools/scripts/features/frcnn/extract_features_frcnn.py [0:0]


    def get_parser(self):
        parser = argparse.ArgumentParser()
        parser.add_argument(
            "--model_name", default="FRCNN", type=str, help="Model to use for detection"
        )
        parser.add_argument(
            "--model_file",
            default=None,
            type=str,
            help="Huggingface model file. This overrides the model_name param.",
        )
        parser.add_argument(
            "--config_name",
            default="FRCNN",
            type=str,
            help="Config to use for detection",
        )
        parser.add_argument(
            "--config_file", default=None, type=str, help="Huggingface config file"
        )
        parser.add_argument(
            "--start_index", default=0, type=int, help="Index to start from "
        )
        parser.add_argument("--end_index", default=None, type=int, help="")
        parser.add_argument("--batch_size", type=int, default=1, help="Batch size")
        parser.add_argument(
            "--num_features",
            type=int,
            default=100,
            help="Number of features to extract.",
        )
        parser.add_argument(
            "--output_folder", type=str, default="./output", help="Output folder"
        )
        parser.add_argument("--image_dir", type=str, help="Image directory or file")
        # TODO add functionality for this flag
        parser.add_argument(
            "--feature_name",
            type=str,
            help="The name of the feature to extract",
            default="fc6",
        )
        parser.add_argument(
            "--exclude_list",
            type=str,
            help="List of images to be excluded from feature conversion. "
            + "Each image on a new line",
            default="./list",
        )
        parser.add_argument(
            "--confidence_threshold",
            type=float,
            default=0,
            help="Threshold of detection confidence above which boxes will be selected",
        )
        # TODO finish background flag
        parser.add_argument(
            "--background",
            action="store_true",
            help="The model will output predictions for the background class when set",
        )
        parser.add_argument(
            "--padding",
            type=str,
            default=None,
            help="You can set your padding, i.e. 'max_detections'",
        )
        parser.add_argument(
            "--visualize",
            type=bool,
            default=False,
            help="Add this flag to save the extra file used for visualization",
        )
        parser.add_argument(
            "--partition",
            type=int,
            default=None,
            help="Add this flag to save the extra file used for visualization",
        )
        parser.add_argument(
            "--max_partition",
            type=int,
            default=None,
            help="Add this flag to save the extra file used for visualization",
        )
        return parser