in transfer/datasets.py [0:0]
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
if args.data_set == 'imagenet':
raise NotImplementedError("Only [cifar10, cifar100, flowers, pets] are supported; \
for imagenet end-to-end finetuning, please refer to the instructions in the main README.")
if args.data_set == 'imagenet':
root = os.path.join(args.data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 1000
elif args.data_set == 'cifar10':
dataset = datasets.CIFAR10(root=args.data_path,
train=is_train,
download=True,
transform=transform)
nb_classes = 10
elif args.data_set == "cifar100":
dataset = datasets.CIFAR100(root=args.data_path,
train=is_train,
download=True,
transform=transform)
nb_classes = 100
elif args.data_set == "flowers":
dataset = oxford_flowers_dataset.Flowers(root=args.data_path,
train=is_train,
download=False,
transform=transform)
nb_classes = 102
elif args.data_set == "pets":
dataset = oxford_pets_dataset.Pets(root=args.data_path,
train=is_train,
download=False,
transform=transform)
nb_classes = 37
else:
raise NotImplementedError("Only [cifar10, cifar100, flowers, pets] are supported; \
for imagenet end-to-end finetuning, please refer to the instructions in the main README.")
return dataset, nb_classes