def load()

in mtrl/replay_buffer.py [0:0]


    def load(self, save_dir):
        chunks = os.listdir(save_dir)
        chunks = sorted(chunks, key=lambda x: int(x.split("_")[0]))
        start = 0
        for chunk in chunks:
            path = os.path.join(save_dir, chunk)
            try:
                payload = torch.load(path)
                end = start + payload[0].shape[0]
                if end > self.capacity:
                    # this condition is added for resuming some very old experiments.
                    # This condition should not be needed with the new experiments
                    # and should be removed going forward.
                    select_till_index = payload[0].shape[0] - (end - self.capacity)
                    end = start + select_till_index
                else:
                    select_till_index = payload[0].shape[0]
                self.env_obses[start:end] = payload[0][:select_till_index]
                self.next_env_obses[start:end] = payload[1][:select_till_index]
                self.actions[start:end] = payload[2][:select_till_index]
                self.rewards[start:end] = payload[3][:select_till_index]
                self.not_dones[start:end] = payload[4][:select_till_index]
                self.task_obs[start:end] = payload[5][:select_till_index]
                self.idx = end - 1
                start = end
                print(f"Loaded replay buffer from path: {path})")
            except EOFError as e:
                print(
                    f"Skipping loading replay buffer from path: {path} due to error: {e}"
                )
        self.last_save = self.idx