mdr/qa/utils.py [41:106]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    model.load_state_dict(state_dict)
    return model


def move_to_cuda(sample):
    if len(sample) == 0:
        return {}

    def _move_to_cuda(maybe_tensor):
        if torch.is_tensor(maybe_tensor):
            return maybe_tensor.cuda()
        elif isinstance(maybe_tensor, dict):
            return {
                key: _move_to_cuda(value)
                for key, value in maybe_tensor.items()
            }
        elif isinstance(maybe_tensor, list):
            return [_move_to_cuda(x) for x in maybe_tensor]
        else:
            return maybe_tensor

    return _move_to_cuda(sample)


def convert_to_half(sample):
    if len(sample) == 0:
        return {}

    def _convert_to_half(maybe_floatTensor):
        if torch.is_tensor(maybe_floatTensor) and maybe_floatTensor.type() == "torch.FloatTensor":
            return maybe_floatTensor.half()
        elif isinstance(maybe_floatTensor, dict):
            return {
                key: _convert_to_half(value)
                for key, value in maybe_floatTensor.items()
            }
        elif isinstance(maybe_floatTensor, list):
            return [_convert_to_half(x) for x in maybe_floatTensor]
        else:
            return maybe_floatTensor

    return _convert_to_half(sample)


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


def normalize(text):
    """Resolve different type of unicode encodings."""
    return unicodedata.normalize('NFD', text)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



mdr/retrieval/utils/utils.py [21:84]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    model.load_state_dict(state_dict)
    return model

def move_to_cuda(sample):
    if len(sample) == 0:
        return {}

    def _move_to_cuda(maybe_tensor):
        if torch.is_tensor(maybe_tensor):
            return maybe_tensor.cuda()
        elif isinstance(maybe_tensor, dict):
            return {
                key: _move_to_cuda(value)
                for key, value in maybe_tensor.items()
            }
        elif isinstance(maybe_tensor, list):
            return [_move_to_cuda(x) for x in maybe_tensor]
        else:
            return maybe_tensor

    return _move_to_cuda(sample)

def convert_to_half(sample):
    if len(sample) == 0:
        return {}

    def _convert_to_half(maybe_floatTensor):
        if torch.is_tensor(maybe_floatTensor) and maybe_floatTensor.type() == "torch.FloatTensor":
            return maybe_floatTensor.half()
        elif isinstance(maybe_floatTensor, dict):
            return {
                key: _convert_to_half(value)
                for key, value in maybe_floatTensor.items()
            }
        elif isinstance(maybe_floatTensor, list):
            return [_convert_to_half(x) for x in maybe_floatTensor]
        else:
            return maybe_floatTensor

    return _convert_to_half(sample)


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


def normalize(text):
    """Resolve different type of unicode encodings."""
    return unicodedata.normalize('NFD', text)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



