def nq_unified_collate()

in mdr/retrieval/data/unified_dataset.py [0:0]


def nq_unified_collate(samples, pad_id=0):
    if len(samples) == 0:
        return {}
    
    batch = {
            'q_input_ids': collate_tokens([s["q_codes"]["input_ids"].view(-1) for s in samples], pad_id),
            'q_mask':collate_tokens([s["q_codes"]["attention_mask"].view(-1) for s in samples], 0),

            'q_neg1_input_ids': collate_tokens([s["q_neg1_codes"]["input_ids"].view(-1) for s in samples], 0),
            'q_neg1_mask':collate_tokens([s["q_neg1_codes"]["attention_mask"].view(-1) for s in samples], 0),

            'c_input_ids': collate_tokens([s["pos_codes"]["input_ids"] for s in samples], 0),
            'c_mask': collate_tokens([s["pos_codes"]["attention_mask"] for s in samples], 0),

            'neg_input_ids': collate_tokens([s["neg_codes"]["input_ids"] for s in samples], 0),
            'neg_mask': collate_tokens([s["neg_codes"]["attention_mask"] for s in samples], 0),

            'dense_neg1_input_ids': collate_tokens([s["dense_neg1_codes"]["input_ids"] for s in samples], 0),
            'dense_neg1_mask': collate_tokens([s["dense_neg1_codes"]["attention_mask"] for s in samples], 0),

            'dense_neg2_input_ids': collate_tokens([s["dense_neg2_codes"]["input_ids"] for s in samples], 0),
            'dense_neg2_mask': collate_tokens([s["dense_neg2_codes"]["attention_mask"] for s in samples], 0),
        
        }

    if "token_type_ids" in samples[0]["q_codes"]:
        batch.update({
            'q_type_ids': collate_tokens([s["q_codes"]["token_type_ids"].view(-1) for s in samples], 0),
            'c_type_ids': collate_tokens([s["pos_codes"]["token_type_ids"] for s in samples], 0),
            "q_neg1_type_ids": collate_tokens([s["q_neg1_codes"]["token_type_ids"].view(-1) for s in samples], 0),
            'neg_type_ids': collate_tokens([s["neg_codes"]["token_type_ids"] for s in samples], 0),
            'dense_neg1_type_ids': collate_tokens([s["dense_neg1_codes"]["token_type_ids"] for s in samples], 0),
            'dense_neg2_type_ids': collate_tokens([s["dense_neg2_codes"]["token_type_ids"] for s in samples], 0),
        })

    return batch