def _train()

in mdr/qa/qa_trainer.py [0:0]


    def _train(self) -> Optional[float]:
        job_env = submitit.JobEnvironment()
        batch_step = 0 # forward batch count
        best_metric = 0
        train_loss_meter = AverageMeter()
        print(f"Start training", flush=True)
        # Start from the loaded epoch
        start_epoch = self._state.epoch
        global_step = self._state.global_step
        for epoch in range(start_epoch, self._train_cfg.num_train_epochs):
            print(f"Start epoch {epoch}", flush=True)
            self._state.model.train()
            self._state.epoch = epoch

            for batch in self._train_loader:
                batch_step += 1
                batch_inputs = move_to_cuda(batch["net_inputs"])
                loss = self._state.model(batch_inputs)
                if torch.cuda.device_count() > 1:
                    loss = loss.mean()
                if self._train_cfg.gradient_accumulation_steps > 1:
                    loss = loss / self._train_cfg.gradient_accumulation_steps
                if self._train_cfg.fp16:
                    with amp.scale_loss(loss, self._state.optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()
                train_loss_meter.update(loss.item())
                if (batch_step + 1) % self._train_cfg.gradient_accumulation_steps == 0:
                    if self._train_cfg.fp16:
                        torch.nn.utils.clip_grad_norm_(
                            amp.master_params(self._state.optimizer), self._train_cfg.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(
                            self._state.model.parameters(), self._train_cfg.max_grad_norm)
                    self._state.optimizer.step()
                    self._state.lr_scheduler.step()
                    self._state.model.zero_grad()
                    global_step += 1
                    self._state.global_step = global_step

                    self.tb_logger.add_scalar('batch_train_loss',
                                        loss.item(), global_step)
                    self.tb_logger.add_scalar('smoothed_train_loss',
                                        train_loss_meter.avg, global_step)
                    if job_env.global_rank == 0:
                        if self._train_cfg.eval_period != -1 and global_step % self._train_cfg.eval_period == 0:
                            metrics = self._eval()
                            for k, v in metrics.items():
                                self.tb_logger.add_scalar(k, v*100, global_step)
                            score = metrics[self._train_cfg.final_metric]
                            if best_metric < score:
                                print("Saving model with best %s %.2f -> em %.2f" % (self._train_cfg.final_metric, best_metric*100, score*100), flush=True)
                                torch.save(self._state.model.state_dict(), os.path.join(self._train_cfg.output_dir, f"checkpoint_best.pt"))
                                best_metric = score
            # Checkpoint only on the master
            if job_env.global_rank == 0:
                self.checkpoint(rm_init=False)
                metrics = self._eval()
                for k, v in metrics.items():
                    self.tb_logger.add_scalar(k, v*100, global_step)
                score = metrics[self._train_cfg.final_metric]
                if best_metric < score:
                    print("Saving model with best %s %.2f -> em %.2f" % (self._train_cfg.final_metric, best_metric*100, score*100), flush=True)
                    torch.save(self._state.model.state_dict(), os.path.join(self._train_cfg.output_dir, f"checkpoint_best.pt"))
                    best_metric = score
                self.log({
                    "best_score": best_metric,
                    "curr_score": score,
                    "smoothed_loss": train_loss_meter.avg,
                    "epoch": epoch
                })
        return best_metric