def init()

in src/wavenet_generator.py [0:0]


    def init(self, batch_size=None):
        if batch_size is not None:
            self.batch_size = batch_size

        x = torch.zeros(self.batch_size, 1, 1)
        x = x.cuda() if self.was_cuda else x
        self.wavenet.first_conv.init_queue(x)

        x = torch.zeros(self.batch_size, self.wavenet.residual_channels, 1)
        x = x.cuda() if self.was_cuda else x
        for layer in self.wavenet.layers:
            layer.causal.init_queue(x)

        if self.was_cuda:
            self.wavenet.cuda()