in src/data_samples.py [0:0]
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=Path, nargs='*',
help='Path to data dir')
parser.add_argument('--data-from-args', type=Path,
help='Path to args.pth')
parser.add_argument('--output', '-o', type=Path,
help='Output path')
parser.add_argument('-n', type=int,
help='Num samples to make')
parser.add_argument('--seq-len', type=int, default=80000)
args = parser.parse_args()
if args.data:
dataset_paths = args.data
elif args.data_from_args:
input_args, _ = torch.load(args.data_from_args)
dataset_paths = input_args.data
else:
print('Please supply either --data or --data-from-args')
return
if dataset_paths[0].is_file():
datasets = [data.H5Dataset(dataset_paths[0], args.seq_len, 'wav')]
else:
datasets = [data.H5Dataset(p / 'test', args.seq_len, 'wav')
for p in dataset_paths]
for dataset_id, dataset in enumerate(datasets):
for i in tqdm.trange(args.n):
wav_data, _ = dataset[0]
wav_data = inv_mu_law(wav_data.numpy())
save_audio(wav_data, args.output / f'{dataset_id}/{i}.wav', rate=data.EncodedFilesDataset.WAV_FREQ)