def get_bart_kwargs()

in muss/mining/training.py [0:0]


def get_bart_kwargs(dataset, language, use_access, use_short_name=False, bart_model='bart.large'):
    assert language == 'en'
    bart_path = prepare_bart_model(bart_model) / 'model.pt'
    arch = {
        'bart.base': 'bart_base',
        'bart.large': 'bart_large',
        'bart.large.cnn': 'bart_large',
    }[bart_model]
    kwargs = {
        'dataset': dataset,
        'metrics_coefs': [0, 1, 0],
        'parametrization_budget': 128,
        'predict_files': get_predict_files(language),
        'preprocessors_kwargs': {
            'GPT2BPEPreprocessor': {},
        },
        'preprocess_kwargs': {'dict_path': GPT2BPEPreprocessor().dict_path},
        'train_kwargs': {
            'ngpus': 8,
            'arch': arch,
            'restore_file': bart_path,
            'max_tokens': 4096,
            'lr': 3e-05,
            'warmup_updates': 500,
            'truncate_source': True,
            'layernorm_embedding': True,
            'share_all_embeddings': True,
            'share_decoder_input_output_embed': True,
            'reset_optimizer': True,
            'reset_dataloader': True,
            'reset_meters': True,
            'required_batch_size_multiple': 1,
            'criterion': 'label_smoothed_cross_entropy',
            'label_smoothing': 0.1,
            'dropout': 0.1,
            'attention_dropout': 0.1,
            'weight_decay': 0.01,
            'optimizer': 'adam',
            'adam_betas': '(0.9, 0.999)',
            'adam_eps': 1e-08,
            'clip_norm': 0.1,
            'lr_scheduler': 'polynomial_decay',
            'max_update': 20000,
            'skip_invalid_size_inputs_valid_test': True,
            'find_unused_parameters': True,
        },
        'evaluate_kwargs': get_evaluate_kwargs(language),
    }
    if use_access:
        kwargs['preprocessors_kwargs'] = add_dicts(
            get_access_preprocessors_kwargs(language, use_short_name=use_short_name), kwargs['preprocessors_kwargs']
        )
    return kwargs