in muss/mining/training.py [0:0]
def get_transformer_kwargs(dataset, language, use_access, use_short_name=False):
kwargs = {
'dataset': dataset,
'parametrization_budget': 128,
'predict_files': get_predict_files(language),
'train_kwargs': {
'ngpus': 8,
'arch': 'bart_large',
'max_tokens': 4096,
'truncate_source': True,
'layernorm_embedding': True,
'share_all_embeddings': True,
'share_decoder_input_output_embed': True,
'required_batch_size_multiple': 1,
'criterion': 'label_smoothed_cross_entropy',
'lr': 3e-04,
'label_smoothing': 0.1,
'dropout': 0.1,
'attention_dropout': 0.1,
'weight_decay': 0.01,
'optimizer': 'adam',
'adam_betas': '(0.9, 0.999)',
'adam_eps': 1e-08,
'clip_norm': 0.1,
},
'preprocessors_kwargs': {
'SentencePiecePreprocessor': {
'vocab_size': 32000,
'input_filepaths': [
get_data_filepath(dataset, 'train', 'complex'),
get_data_filepath(dataset, 'train', 'simple'),
],
}
# 'SentencePiecePreprocessor': {'vocab_size': 32000, 'input_filepaths': [get_dataset_dir('enwiki') / 'all_sentences']}
},
'evaluate_kwargs': get_evaluate_kwargs(language),
}
if use_access:
kwargs['preprocessors_kwargs'] = add_dicts(
get_access_preprocessors_kwargs(language, use_short_name=use_short_name), kwargs['preprocessors_kwargs']
)
return kwargs