in muss/fairseq/main.py [0:0]
def find_best_parametrization_fast(exp_dir, preprocessors_kwargs, **kwargs):
preprocessors_kwargs = preprocessors_kwargs.copy() # We are going to modify it inplace
preprocessors = get_preprocessors(preprocessors_kwargs)
orig_sents, refs_sents = get_orig_and_refs_sents(**kwargs.get('evaluate_kwargs', {'test_set': 'asset_valid'}))
features = defaultdict(list)
for ref_sents in refs_sents:
for orig_sent, ref_sent in zip(orig_sents, ref_sents):
for preprocessor in preprocessors:
if not hasattr(preprocessor, 'get_feature_value'):
continue
features[preprocessor.__class__.__name__].append(preprocessor.get_feature_value(orig_sent, ref_sent))
for preprocessor_name, preprocessor_features in features.items():
preprocessors_kwargs[preprocessor_name]['target_ratio'] = np.mean(preprocessor_features)
return preprocessors_kwargs