in models/bg/mlp.py [0:0]
def __init__(self, width, height, allcameras, bgdict=True, demod=True, trainstart=0):
super(BGModel, self).__init__()
self.allcameras = allcameras
self.trainstart = trainstart
if bgdict:
self.bg = BufferDict({k: torch.ones(3, height, width) for k in allcameras})
else:
self.bg = None
if trainstart > -1:
self.mlp1 = nn.Sequential(
Conv2dELR(60+24, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 256, 1, 1, 0, demod="demod" if demod else None))
self.mlp2 = nn.Sequential(
Conv2dELR(60+24+256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 3, 1, 1, 0, demod=False))