def __init__()

in models/bg/mlp.py [0:0]


    def __init__(self, width, height, allcameras, bgdict=True, demod=True, trainstart=0):
        super(BGModel, self).__init__()

        self.allcameras = allcameras
        self.trainstart = trainstart

        if bgdict:
            self.bg = BufferDict({k: torch.ones(3, height, width) for k in allcameras})
        else:
            self.bg = None

        if trainstart > -1:
            self.mlp1 = nn.Sequential(
                    Conv2dELR(60+24, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
                    Conv2dELR(  256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
                    Conv2dELR(  256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
                    Conv2dELR(  256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
                    Conv2dELR(  256, 256, 1, 1, 0, demod="demod" if demod else None))

            self.mlp2 = nn.Sequential(
                    Conv2dELR(60+24+256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
                    Conv2dELR(      256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
                    Conv2dELR(      256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
                    Conv2dELR(      256,   3, 1, 1, 0, demod=False))