in automl21/scs_neural/experimentation/launcher.py [0:0]
def plot_aggregate_results(self, test_results, train_results,
tag='t', dir_tag=None):
if dir_tag is None:
dir_tag = ""
upd_dir_tag = 'aggregates/' + dir_tag + '/'
if dir_tag is not None:
os.makedirs('aggregates/' + dir_tag, exist_ok=True)
nrow, ncol = 3, 2
metrics = ['u_diff_train', 'u_diff_test', 'u_diff_orig_train', 'u_diff_orig_test',
'all_u_diff_train', 'loss']
metric_names = ['Normalized |u - u_prev| (Train)', 'Normalized |u - u_prev| (Test)',
'|u - u_prev| (Train)', '|u - u_prev| (Test)',
'Unscaled |u - u_prev| Train', 'Loss']
upd_tag = upd_dir_tag + tag + '_agg'
agg, conf = [{}, {}, {}], [{}, {}, {}]
all_metrics = ['u_diff', 'u_diff_orig']
for metric in all_metrics:
results = [train_results, test_results]
for i, name in enumerate(['train', 'test']):
metric_upd = metric + '_' + name
curr_results = results[i]
for j in range(1):
agg[j][metric_upd] = curr_results[2*j][metric]
conf[j][metric_upd] = curr_results[2*j + 1][metric]
metric = 'loss'
for j in range(1):
agg[j][metric] = test_results[2*j][metric]
data = {"scs_neural": agg[0]}
std = {"scs_neural": conf[0]}
data['scs_neural']['all_u_diff_train'] = (self.diff_u_sum / self.count_sum).detach().numpy()
var = (self.diff_u_sum_sq / self.count_sum - (self.diff_u_sum / self.count_sum).pow(2))
std['scs_neural']['all_u_diff_train'] = var.sqrt().detach().numpy()
self._plot_metrics(data, nrow, ncol, metrics, metric_names, upd_tag, std)