def __init__()

in models/encoders/mvconv1.py [0:0]


    def __init__(self, ninputs, tied=False):
        super(Encoder, self).__init__()

        self.ninputs = ninputs
        self.tied = tied

        self.down1 = nn.ModuleList([nn.Sequential(
                nn.Conv2d(3, 64, 4, 2, 1), nn.LeakyReLU(0.2),
                nn.Conv2d(64, 64, 4, 2, 1), nn.LeakyReLU(0.2),
                nn.Conv2d(64, 128, 4, 2, 1), nn.LeakyReLU(0.2),
                nn.Conv2d(128, 128, 4, 2, 1), nn.LeakyReLU(0.2),
                nn.Conv2d(128, 256, 4, 2, 1), nn.LeakyReLU(0.2),
                nn.Conv2d(256, 256, 4, 2, 1), nn.LeakyReLU(0.2),
                nn.Conv2d(256, 256, 4, 2, 1), nn.LeakyReLU(0.2))
                for i in range(1 if self.tied else self.ninputs)])
        self.down2 = nn.Sequential(
                nn.Linear(256 * self.ninputs * 4 * 3, 512), nn.LeakyReLU(0.2))
        height, width = 512, 334
        ypad = ((height + 127) // 128) * 128 - height
        xpad = ((width + 127) // 128) * 128 - width
        self.pad = nn.ZeroPad2d((xpad // 2, xpad - xpad // 2, ypad // 2, ypad - ypad // 2))
        self.mu = nn.Linear(512, 256)
        self.logstd = nn.Linear(512, 256)

        for i in range(1 if self.tied else self.ninputs):
            models.utils.initseq(self.down1[i])
        models.utils.initseq(self.down2)
        models.utils.initmod(self.mu)
        models.utils.initmod(self.logstd)