in models/utils.py [0:0]
def xaviermultiplier(m, gain):
if isinstance(m, nn.Conv1d):
ksize = m.kernel_size[0]
n1 = m.in_channels
n2 = m.out_channels
std = gain * math.sqrt(2.0 / ((n1 + n2) * ksize))
elif isinstance(m, nn.ConvTranspose1d):
ksize = m.kernel_size[0] // m.stride[0]
n1 = m.in_channels
n2 = m.out_channels
std = gain * math.sqrt(2.0 / ((n1 + n2) * ksize))
elif isinstance(m, nn.Conv2d):
ksize = m.kernel_size[0] * m.kernel_size[1]
n1 = m.in_channels
n2 = m.out_channels
std = gain * math.sqrt(2.0 / ((n1 + n2) * ksize))
elif isinstance(m, nn.ConvTranspose2d):
ksize = m.kernel_size[0] * m.kernel_size[1] // m.stride[0] // m.stride[1]
n1 = m.in_channels
n2 = m.out_channels
std = gain * math.sqrt(2.0 / ((n1 + n2) * ksize))
elif isinstance(m, nn.Conv3d):
ksize = m.kernel_size[0] * m.kernel_size[1] * m.kernel_size[2]
n1 = m.in_channels
n2 = m.out_channels
std = gain * math.sqrt(2.0 / ((n1 + n2) * ksize))
elif isinstance(m, nn.ConvTranspose3d):
ksize = m.kernel_size[0] * m.kernel_size[1] * m.kernel_size[2] // m.stride[0] // m.stride[1] // m.stride[2]
n1 = m.in_channels
n2 = m.out_channels
std = gain * math.sqrt(2.0 / ((n1 + n2) * ksize))
elif isinstance(m, nn.Linear):
n1 = m.in_features
n2 = m.out_features
std = gain * math.sqrt(2.0 / (n1 + n2))
else:
return None
return std