def load_chkpt()

in model/interpolation_net.py [0:0]


    def load_chkpt(self, ckpt_path):
        ckpt = torch.load(ckpt_path, map_location=device)

        self.i_epoch = ckpt["i_epoch"]
        self.interp_module.load_state_dict(ckpt["interp_module"])

        if "par" in ckpt:
            self.interp_module.param.from_dict(ckpt["par"])
            self.interp_module.param.print_self()

        if "optimizer_state_dict" in ckpt:
            self.optimizer.load_state_dict(ckpt["optimizer_state_dict"])

        self.interp_module.train()