in utils/shape_utils.py [0:0]
def detach_cpu(self):
self.vert = self.vert.detach().cpu()
self.triv = self.triv.detach().cpu()
if self.normal is not None:
self.normal = self.normal.detach().cpu()
if self.neigh is not None:
self.neigh = self.neigh.detach().cpu()
if self.D is not None:
self.D = self.D.detach().cpu()
if self.vert_full is not None:
self.vert_full = self.vert_full.detach().cpu()
if self.samples is not None and torch.is_tensor(self.samples):
self.samples = self.samples.detach().cpu()
if self.sub is not None:
for i_s in range(len(self.sub)):
for i_p in range(len(self.sub[i_s])):
self.sub[i_s][i_p] = self.sub[i_s][i_p].detach().cpu()