def rocket()

in nevergrad/functions/rocket/rocket.py [0:0]


def rocket(thrust_bias: np.ndarray):

    assert len(thrust_bias) == 24, "Bad guide length."
    # Covert ang to rads

    def rad(ang):
        return (ang / 360) * 2 * (3.1415926)

    # air density (simple model based on nasa function online)
    def air_density(alt):
        if alt <= 11000:
            T = 15.04 - (0.00649 * alt)
            p = 101.29 * math.pow((T + 273.1) / 288.08, 5.256)
        elif alt <= 25000:
            T = -56.46
            p = float(22.65 * (math.exp(1.73 - 0.000157 * alt))).real
        else:
            T = -131.21 + (0.00299 * alt)
            p = 2.488 * (((T + 273.1) / 216.6) ** -11.388).real
        d = p / (0.2869 * (T + 273.1))
        return d

    def alt(Ex, Ey, Ez):
        ecef = pyproj.Proj(proj="geocent", ellps="WGS84", datum="WGS84")
        lla = pyproj.Proj(proj="latlong", ellps="WGS84", datum="WGS84")
        transformer = pyproj.Transformer.from_proj(ecef, lla)
        _, _, alt = transformer.transform(Ex, Ey, Ez, radians=True)
        return alt

    def grav_force(Ex, Ey, Ez, m):
        # lat = rad(lat)
        G = -6.67408 * (1 / (10 ** 11))  # Gravitational Constant (m^3 kg^-1 s^-2)
        M = 5.972 * (10 ** 24)  # Earth Mass (kg)
        # a = 6398137  # equatoral radius
        # b = 6356752  # polar radius
        # R = math.sqrt((math.pow(math.pow(a, 2) * math.cos(lat), 2) + (math.pow(math.pow(b, 2) * math.sin(lat), 2))) / (
        #            math.pow(a * math.cos(lat), 2) + (math.pow(b * math.sin(lat), 2))))  # Radius of earth (m)
        r = (Ex ** 2 + Ey ** 2 + Ez ** 2) ** 0.5
        F = (G * M * m) / (r ** 2)  # Force of gravity (N)
        F_z = F * Ez / r
        F_x = F * (Ex / ((Ex ** 2 + Ey ** 2) ** 0.5))
        F_y = F * (Ey / ((Ex ** 2 + Ey ** 2) ** 0.5))
        return F_x, F_y, F_z  # in the -r direction

    def drag_force(Ex, Ey, Ez, Evx, Evy, Evz):
        cd = 0.94  # coefficent of drag
        a = 0.00487  # cross sectional area m^2
        p = air_density(alt(Ex, Ey, Ez))  # air density with respect to alt
        # drag = (1/2)*p*v_sqrd*cd*a*(vy/(math.sqrt(v)))
        v_sqrd = (Evx ** 2) + (Evy ** 2) + (Evz ** 2)
        if Evx == 0:
            Ex_drag = 0
        else:
            Ex_drag = (1 / 2) * p * v_sqrd * cd * a * (-Evx / (math.sqrt(v_sqrd)))
        if Evy == 0:
            Ey_drag = 0
        else:
            Ey_drag = (1 / 2) * p * v_sqrd * cd * a * (-Evy / (math.sqrt(Evx ** 2 + Evy ** 2)))
        if Evz == 0:
            Ez_drag = 0
        else:
            Ez_drag = (1 / 2) * p * v_sqrd * cd * a * (-Evz / (math.sqrt(Evx ** 2 + Evy ** 2)))
        return Ex_drag, Ey_drag, Ez_drag

    # Net Force
    def net_force(Ex, Ey, Ez, Evx, Evy, Evz, m):
        Fx_drag, Fy_drag, Fz_drag = drag_force(Ex, Ey, Ez, Evx, Evy, Evz)
        Fx_grav, Fy_grav, Fz_grav = grav_force(Ex, Ey, Ez, m)
        Fx = Fx_drag + Fx_grav
        Fy = Fy_drag + Fy_grav
        Fz = Fz_drag + Fz_grav
        return Fx, Fy, Fz

    # def lift_force        lift -> pitching moment by reference length

    # def side_force        side -> yaw moment by reference length

    # Areodynaminc forces are applied at center of pressfrom math import *

    # Need to find ideal coefficient of drag
    # Diameter assumed 0.3m
    # Burn time 175 s +- 20 s
    # avg thrust 1540 N
    # Total mass 700 kg
    # Propellant mass 1st stage 85% of first stage mass -> 510 kg +- x
    # Total 2nd stage 98 kg
    # 2nd Stage propellant 83 kg

    # GOAL FOR FINAL CODE (this refers to the original code, this does not apply here at least in the foreseeable future)
    # Iterate through launch angels to minimize delta V in the y(rocket frame) direction, to 150km
    # after thrust, maximize delta v in the x(rocket frame) direction
    # Minimize time for initial trust burn as third priority
    # looking for initial launch angle, relative angle after thrust is 0, final velocity

    # Inertial Earth Frame. Reference fram centered at the earth center of gravity (z-up, x-forward, y-right)
    # a = 6398137  # equatoral radius
    # b = 6356752  # polar radius
    # radius = R = math.sqrt((math.pow(math.pow(a, 2) * math.cos(latitude), 2) + (math.pow(math.pow(b, 2) * math.sin(latitude), 2))) / (
    #                 math.pow(a * math.cos(latitude), 2) + (math.pow(b * math.sin(latitude), 2))))  # Radius of earth (m)
    # Ez = radius * sin(latitude)  # Zero at earths center of gravity, going up through north pole
    # Ex = radius * cos(latitude) * cos(longitude)  # Zero at earths center of gravity, going through equator forward
    # Ey = radius * cos(latitude) * sin(longitude)  # Zero at earths center of gravity, going through equator right
    # with open('LLA.csv', 'r') as f:
    # #     next(f)
    # #     reader = csv.reader(f, 'excel')
    # #     data = []
    # #     for row in reader:
    # #         data.append(float(row[0]))
    # #     latitude = rad(data[0])
    # #     longitude = rad(data[1])
    # #     altitude = data[2]

    # This is not the same as in the original code (just minor modifications).
    altitude = float(0)
    latitude = rad(float(28.5729))
    longitude = rad(float(80.659))
    # Altitude,Latitude,Longitude
    # 0,28.5729,80.659

    # Black Rock Navada. From 25km. 45 degrees from out of earth, due east.
    # latitude = rad(28.5729)  # N. Latitude
    # longitude = rad(80.6490)  # W. Longitude
    # altitude = 0    # Altitude of rocket in meters
    ecef = pyproj.Proj(proj="geocent", ellps="WGS84", datum="WGS84")
    lla = pyproj.Proj(proj="latlong", ellps="WGS84", datum="WGS84")
    transformer = pyproj.Transformer.from_proj(lla, ecef)
    Ex, Ey, Ez = transformer.transform(longitude, latitude, altitude, radians=True)
    Evx, Evy, Evz = 0, 0, 0
    r_initial = (Ex ** 2 + Ey ** 2 + Ez ** 2) ** 0.5
    # print(Ex, Ey, Ez, r_initial, sep="\t")

    # Rocket specs
    roc_mass = 0.0472  # mass of rocket in kg (not including engine
    theta = 45  # Angle of launch from z
    phi = 45  # Angle of launch from x
    # Original code: eng_file = "C6.csv"  # engine file location
    eng_mass_initial = 0.024  # Loaded engine mass in kg
    eng_mass_final = 0.0132  # empty engine mass in kg
    total_mass = roc_mass + eng_mass_initial
    final_roc_mass = roc_mass + eng_mass_final

    # Earth rotation speed at inital position
    # Position Velocity Attitude(Earth Centric x-forward y-right z-up)
    # latitude and longitude position

    # Adapted from the orignal code (minor modifications).
    thrust = np.asarray(
        [
            [0.0, 0.0],
            [0.946, 0.031],
            [4.826, 0.092],
            [9.936, 0.139],
            [14.09, 0.192],
            [11.446, 0.209],
            [7.381, 0.231],
            [6.151, 0.248],
            [5.489, 0.292],
            [4.921, 0.37],
            [4.448, 0.475],
            [4.258, 0.671],
            [4.542, 0.702],
            [4.164, 0.723],
            [4.448, 0.85],
            [4.353, 1.063],
            [4.353, 1.211],
            [4.069, 1.242],
            [4.258, 1.303],
            [4.353, 1.468],
            [4.448, 1.656],
            [4.448, 1.821],
            [2.933, 1.834],
            [1.325, 1.847],
            [0.0, 1.86],
        ]
    )

    thrust_list = np.asarray([thrust[int(i)][0] for i in range(len(thrust) - 1)])
    thrust_time_list = np.asarray([thrust[i + 1][1] - thrust[i][1] for i in range(0, len(thrust) - 1)])
    total_thrust = np.sum(np.multiply(thrust_list, thrust_time_list))

    # We moodify the thrust while preserving the sum (this is an adaptation to Nevergrad).
    # 1: we modify.
    thrust_list = np.multiply(thrust_list, np.exp(thrust_bias))
    # 2: we normalize.
    thrust_list = thrust_list * total_thrust / np.sum(np.multiply(thrust_list, thrust_time_list))

    for i in range(len(thrust) - 1):
        thrust[i][0] = thrust_list[i]
    # total_mass vs time curve
    # this is used to represent the mass loss while the rocket burns fuel
    mass_time = []
    # total_thrust = 0
    # for row in thrust:
    #    total_thrust += row[0]

    mass_loss = eng_mass_initial - eng_mass_final
    mass_reman = eng_mass_initial
    for row in thrust:
        # Equation below weird to me: this is not normalized by time ? the mass which is lost should be proportional
        # to thrust x delta-time, right ?
        # percentage = row[0] / total_thrust   # percentage of total thrust to find percentage of mass lost
        percentage = row[0] / np.sum(
            thrust_list
        )  # percentage of total thrust to find percentage of mass lost
        assert percentage >= 0.0
        assert percentage <= 1.0
        mass_loss = mass_reman * percentage
        mass_reman -= mass_loss
        total_mass = roc_mass + mass_reman
        mass_time.append([total_mass, row[1]])
    mass_list = [mass_time[i][0] for i in range(0, len(thrust))]

    # Lists used to store data and later import data to excel
    Ex_list, Ey_list, Ez_list = np.asarray([Ex]), np.asarray([Ey]), np.asarray([Ez])
    Evx_list, Evy_list, Evz_list = np.asarray([Evx]), np.asarray([Evy]), np.asarray([Evz])
    time_list = np.asarray([0])
    r_list = np.asarray([(Ex ** 2 + Ey ** 2 + Ez ** 2) ** 0.5])

    # Initializing variables
    time = 0.0  # time in seconds

    # while thrust is greater than zero
    # this is while the rocket engine is firing
    for i in range(len(thrust) - 2):
        r = (Ex ** 2 + Ey ** 2 + Ez ** 2) ** 0.5
        dt = thrust[i][1]
        Efx, Efy, Efz = net_force(Ex, Ey, Ez, Evx, Evy, Evz, mass_list[i])
        Ex += Evx * dt
        Ey += Evy * dt
        Ez += Evz * dt
        dt = thrust[i + 1][1] - thrust[i][1]
        Evz += (((thrust[i][0] * math.cos(theta)) + Efz) * dt) / mass_list[i]
        Evx += (((thrust[i][0] * math.sin(theta) * math.cos(phi)) + Efx) * dt) / mass_list[i]
        Evy += (((thrust[i][0] * math.sin(theta) * math.sin(phi)) + Efy) * dt) / mass_list[i]
        time += dt
        Ex_list = np.append(Ex_list, (round(Ex, 6)))
        Ey_list = np.append(Ey_list, (round(Ey, 6)))
        Ez_list = np.append(Ez_list, (round(Ez, 6)))
        Evx_list = np.append(Evx_list, (round(Evx, 6)))
        Evy_list = np.append(Evy_list, (round(Evy, 6)))
        Evz_list = np.append(Evz_list, (round(Evz, 6)))
        time_list = np.append(time_list, (round(time, 6)))
        r_list = np.append(r_list, (round(r, 6)))

    # After thrust
    # This is when the engine is out of fuel and there is no longer a thrust force
    time_step = 0.05  # time time_step in seconds
    dt = time_step
    while r > r_initial:
        r = (Ex ** 2 + Ey ** 2 + Ez ** 2) ** 0.5
        Efx, Efy, Efz = net_force(Ex, Ey, Ez, Evx, Evy, Evz, final_roc_mass)
        Ex += Evx * dt
        Ey += Evy * dt
        Ez += Evz * dt
        Evx += (Efx * dt) / final_roc_mass
        Evy += (Efy * dt) / final_roc_mass
        Evz += (Efz * dt) / final_roc_mass
        # print(Evx, Evy, Evz, r, sep='\t')
        time += dt
        # update(Ex, Ey, Ez, Evx, Evy, Evz, time, r)
        Ex_list = np.append(Ex_list, (round(Ex, 6)))
        Ey_list = np.append(Ey_list, (round(Ey, 6)))
        Ez_list = np.append(Ez_list, (round(Ez, 6)))
        Evx_list = np.append(Evx_list, (round(Evx, 6)))
        Evy_list = np.append(Evy_list, (round(Evy, 6)))
        Evz_list = np.append(Evz_list, (round(Evz, 6)))
        time_list = np.append(time_list, (round(time, 6)))
        r_list = np.append(r_list, (round(r, 6)))

    return 1.0 - max(Ez_list) / 3032708.353202  # Should be 0 for input (0.,....,0.)