pyhanabi/supervised_model.py [27:41]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.lstm = nn.LSTM(
            self.hid_dim,
            self.hid_dim,
            num_layers=self.num_lstm_layer,
        ).to(device)
        self.lstm.flatten_parameters()
        self.out_layer = nn.Linear(self.hid_dim, self.out_dim)

    @torch.jit.script_method
    def forward(
        self,
        priv_s: torch.Tensor,
        publ_s: torch.Tensor,
        hid: Optional[Dict[str, torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



pyhanabi/supervised_model.py [91:106]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.lstm = nn.LSTM(
            self.hid_dim,
            self.hid_dim,
            num_layers=self.num_lstm_layer,
        ).to(device)
        self.lstm.flatten_parameters()

        self.out_layer = nn.Linear(self.hid_dim, self.out_dim)

    @torch.jit.script_method
    def forward(
        self,
        priv_s: torch.Tensor,
        publ_s: torch.Tensor,
        hid: Optional[Dict[str, torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



