in transforms.py [0:0]
def forward(self, videos: Sequence[torch.Tensor]):
"""
Args:
videos: A list of C, T, H, W videos.
Returns:
videos: A list with 3x the number of elements. Each video converted
to C, T, H', W' by spatial cropping.
"""
assert isinstance(videos, list), "Must be a list of videos after temporal crops"
assert all([video.ndim == 4 for video in videos]), "Must be (C,T,H,W)"
res = []
for video in videos:
for spatial_idx in self.crops_to_ext:
res.append(uniform_crop(video, self.crop_size, spatial_idx)[0])
return res