def forward()

in transforms.py [0:0]


    def forward(self, videos: Sequence[torch.Tensor]):
        """
        Args:
            videos: A list of C, T, H, W videos.
        Returns:
            videos: A list with 3x the number of elements. Each video converted
                to C, T, H', W' by spatial cropping.
        """
        assert isinstance(videos, list), "Must be a list of videos after temporal crops"
        assert all([video.ndim == 4 for video in videos]), "Must be (C,T,H,W)"
        res = []
        for video in videos:
            for spatial_idx in self.crops_to_ext:
                res.append(uniform_crop(video, self.crop_size, spatial_idx)[0])
        return res