parsers/Spouse/Spouse_Finetune_Preprocess.py [269:302]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        assert len(tokens) == len(annotations), (len(tokens), len(annotations))

        # print(f'Sentence unique id is {sentence_unique_id}')
        example_features.append(
            SpouseInputFeatures(
                unique_example_id=example_unique_id,
                unique_sentence_id=sentence_unique_id,
                tokens=tokens,
                annotations=annotations,
                input_ids=input_ids,
                input_mask=input_mask,
                input_type_ids=input_type_ids)
        )
        sentence_unique_id += 1

        dataset_features.append((example_target, example_highlight, example_features))
    return dataset_features


def _process_examples(dataset):
    """Read a list of `InputExample`s from list."""
    examples = []
    unique_id = 0

    i = 0
    for pos_neg in ['positive', 'negative']:
        for doc in dataset[pos_neg]:
            i += 1
            if i % 2000 == 0:
                print(i, end='')
                print('\r', end='')

            sample = doc['parsed']
            target = doc['target']
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



parsers/Spouse/Spouse_Preprocess.py [369:402]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            assert len(tokens) == len(annotations), (len(tokens), len(annotations))

            # print(f'Sentence unique id is {sentence_unique_id}')
            example_features.append(
                SpouseInputFeatures(
                    unique_example_id=example_unique_id,
                    unique_sentence_id=sentence_unique_id,
                    tokens=tokens,
                    annotations=annotations,
                    input_ids=input_ids,
                    input_mask=input_mask,
                    input_type_ids=input_type_ids)
            )
            sentence_unique_id += 1

        dataset_features.append((example_target, example_highlight, example_features))
    return dataset_features


def _process_examples(dataset):
    """Read a list of `InputExample`s from list."""
    examples = []
    unique_id = 0

    i = 0
    for pos_neg in ['positive', 'negative']:
        for doc in dataset[pos_neg]:
            i += 1
            if i % 2000 == 0:
                print(i, end='')
                print('\r', end='')

            sample = doc['parsed']
            target = doc['target']
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



