in agents/offline_agents.py [0:0]
def add_parser_arguments(cls, parser: 'argparse.ArgumentParser') -> None:
parser = parser.add_argument_group('%s params' % cls.__name__)
parser.add_argument('--dqn-train-batch-size', type=int, default=32)
parser.add_argument('--dqn-updates', type=int, default=1000)
parser.add_argument('--dqn-save-checkpoints-every',
type=int,
default=-1,
help='How often to save checkpoints')
parser.add_argument(
'--dqn-negative-sampling-prob',
type=float,
default=1.0,
help='Relative probability to take negative example during'
' training. Value 1.0 means that the sampling is indenependent of'
' the label. Lower values will choose negative examples less'
' frequently.')
parser.add_argument(
'--dqn-balance-classes',
type=int,
default=0,
help='Samples the same number of positives ane negatives for every'
' batch.')
parser.add_argument('--dqn-network-type',
choices=('resnet18', 'simple'),
default='resnet18',
help='type of architecture to use')
parser.add_argument(
'--dqn-num-auccess-actions',
type=int,
default=0,
help='If positive will run AUCCESS eval with this number of'
' actions.')
parser.add_argument('--dqn-action-layers', type=int, default=1)
parser.add_argument('--dqn-action-hidden-size', type=int, default=256)
parser.add_argument('--dqn-eval-every',
type=int,
default=1000,
help='Eval every this many updates.')
parser.add_argument('--dqn-cosine-scheduler',
type=int,
default=0,
help='Whether to use cosine scheduler.')
parser.add_argument('--dqn-fusion-place',
choices=('first', 'last', 'all', 'none',
'last_single'),
default='last')
parser.add_argument('--dqn-learning-rate', type=float, default=3e-4)
# Evaluation time paramters.
parser.add_argument('--dqn-eval-batch-size', type=int, default=128)
parser.add_argument(
'--dqn-rank-size',
type=int,
default=-1,
help='How many options to re-rank for eval. If negative, will use'
' train set.')
parser.add_argument(
'--dqn-load-from',
help='If set, will skip the training and load the model from the'
' last checkpoint in the folder. Model architecture and training'
' params will be ignored.')
parser.add_argument('--dqn-finetune-iterations',
type=int,
default=0,
help='If set, will fine-tune DQN on test data')
parser.add_argument('--dqn-refine-iterations',
type=int,
default=0,
help='If set, will refine actions for each task')
parser.add_argument('--dqn-refine-loss',
choices=('ce', 'linear'),
default='ce')
parser.add_argument('--dqn-refine-lr', type=float, default=1e-4)