apps/recon.py [34:60]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    image_tensor_global = data['img_512'].to(device=cuda)
    image_tensor = data['img'].to(device=cuda)
    calib_tensor = data['calib'].to(device=cuda)

    net.filter_global(image_tensor_global)
    net.filter_local(image_tensor[:,None])

    try:
        if net.netG.netF is not None:
            image_tensor_global = torch.cat([image_tensor_global, net.netG.nmlF], 0)
        if net.netG.netB is not None:
            image_tensor_global = torch.cat([image_tensor_global, net.netG.nmlB], 0)
    except:
        pass
    
    b_min = data['b_min']
    b_max = data['b_max']
    try:
        save_img_path = save_path[:-4] + '.png'
        save_img_list = []
        for v in range(image_tensor_global.shape[0]):
            save_img = (np.transpose(image_tensor_global[v].detach().cpu().numpy(), (1, 2, 0)) * 0.5 + 0.5)[:, :, ::-1] * 255.0
            save_img_list.append(save_img)
        save_img = np.concatenate(save_img_list, axis=1)
        cv2.imwrite(save_img_path, save_img)

        verts, faces, _, _ = reconstruction(
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



apps/recon.py [85:111]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    image_tensor_global = data['img_512'].to(device=cuda)
    image_tensor = data['img'].to(device=cuda)
    calib_tensor = data['calib'].to(device=cuda)

    net.filter_global(image_tensor_global)
    net.filter_local(image_tensor[:,None])

    try:
        if net.netG.netF is not None:
            image_tensor_global = torch.cat([image_tensor_global, net.netG.nmlF], 0)
        if net.netG.netB is not None:
            image_tensor_global = torch.cat([image_tensor_global, net.netG.nmlB], 0)
    except:
        pass

    b_min = data['b_min']
    b_max = data['b_max']
    try:
        save_img_path = save_path[:-4] + '.png'
        save_img_list = []
        for v in range(image_tensor_global.shape[0]):
            save_img = (np.transpose(image_tensor_global[v].detach().cpu().numpy(), (1, 2, 0)) * 0.5 + 0.5)[:, :, ::-1] * 255.0
            save_img_list.append(save_img)
        save_img = np.concatenate(save_img_list, axis=1)
        cv2.imwrite(save_img_path, save_img)

        verts, faces, _, _ = reconstruction(
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



