in lib/model/HGPIFuNetwNML.py [0:0]
def __init__(self,
opt,
projection_mode='orthogonal',
criteria={'occ': nn.MSELoss()}
):
super(HGPIFuNetwNML, self).__init__(
projection_mode=projection_mode,
criteria=criteria)
self.name = 'hg_pifu'
in_ch = 3
try:
if opt.use_front_normal:
in_ch += 3
if opt.use_back_normal:
in_ch += 3
except:
pass
self.opt = opt
self.image_filter = HGFilter(opt.num_stack, opt.hg_depth, in_ch, opt.hg_dim,
opt.norm, opt.hg_down, False)
self.mlp = MLP(
filter_channels=self.opt.mlp_dim,
merge_layer=self.opt.merge_layer,
res_layers=self.opt.mlp_res_layers,
norm=self.opt.mlp_norm,
last_op=nn.Sigmoid())
self.spatial_enc = DepthNormalizer(opt)
self.im_feat_list = []
self.tmpx = None
self.normx = None
self.phi = None
self.intermediate_preds_list = []
init_net(self)
self.netF = None
self.netB = None
try:
if opt.use_front_normal:
self.netF = define_G(3, 3, 64, "global", 4, 9, 1, 3, "instance")
if opt.use_back_normal:
self.netB = define_G(3, 3, 64, "global", 4, 9, 1, 3, "instance")
except:
pass
self.nmlF = None
self.nmlB = None