def gen_mesh_imgColor()

in apps/recon.py [0:0]


def gen_mesh_imgColor(res, net, cuda, data, save_path, thresh=0.5, use_octree=True, components=False):
    image_tensor_global = data['img_512'].to(device=cuda)
    image_tensor = data['img'].to(device=cuda)
    calib_tensor = data['calib'].to(device=cuda)

    net.filter_global(image_tensor_global)
    net.filter_local(image_tensor[:,None])

    try:
        if net.netG.netF is not None:
            image_tensor_global = torch.cat([image_tensor_global, net.netG.nmlF], 0)
        if net.netG.netB is not None:
            image_tensor_global = torch.cat([image_tensor_global, net.netG.nmlB], 0)
    except:
        pass

    b_min = data['b_min']
    b_max = data['b_max']
    try:
        save_img_path = save_path[:-4] + '.png'
        save_img_list = []
        for v in range(image_tensor_global.shape[0]):
            save_img = (np.transpose(image_tensor_global[v].detach().cpu().numpy(), (1, 2, 0)) * 0.5 + 0.5)[:, :, ::-1] * 255.0
            save_img_list.append(save_img)
        save_img = np.concatenate(save_img_list, axis=1)
        cv2.imwrite(save_img_path, save_img)

        verts, faces, _, _ = reconstruction(
            net, cuda, calib_tensor, res, b_min, b_max, thresh, use_octree=use_octree, num_samples=100000)
        verts_tensor = torch.from_numpy(verts.T).unsqueeze(0).to(device=cuda).float()

        # if this returns error, projection must be defined somewhere else
        xyz_tensor = net.projection(verts_tensor, calib_tensor[:1])
        uv = xyz_tensor[:, :2, :]
        color = index(image_tensor[:1], uv).detach().cpu().numpy()[0].T
        color = color * 0.5 + 0.5

        if 'calib_world' in data:
            calib_world = data['calib_world'].numpy()[0]
            verts = np.matmul(np.concatenate([verts, np.ones_like(verts[:,:1])],1), inv(calib_world).T)[:,:3]

        save_obj_mesh_with_color(save_path, verts, faces, color)

    except Exception as e:
        print(e)