in embed.py [0:0]
def reconstruction_eval(adj, opt, epoch, elapsed, loss, pth, best):
chkpnt = th.load(pth, map_location='cpu')
model = build_model(opt, chkpnt['embeddings'].size(0))
model.load_state_dict(chkpnt['model'])
meanrank, maprank = eval_reconstruction(adj, model)
sqnorms = model.manifold.norm(model.lt)
return {
'epoch': epoch,
'elapsed': elapsed,
'loss': loss,
'sqnorm_min': sqnorms.min().item(),
'sqnorm_avg': sqnorms.mean().item(),
'sqnorm_max': sqnorms.max().item(),
'mean_rank': meanrank,
'map_rank': maprank,
'best': bool(best is None or loss < best['loss']),
}