in hype/rsgd.py [0:0]
def step(self, lr=None, counts=None, **kwargs):
"""Performs a single optimization step.
Arguments:
lr (float, optional): learning rate for the current update.
"""
loss = None
for group in self.param_groups:
for p in group['params']:
lr = lr or group['lr']
rgrad = group['rgrad']
expm = group['expm']
if p.grad is None:
continue
d_p = p.grad.data
# make sure we have no duplicates in sparse tensor
if d_p.is_sparse:
d_p = d_p.coalesce()
d_p = rgrad(p.data, d_p)
d_p.mul_(-lr)
expm(p.data, d_p)
return loss