def loadRes()

in experiments/sgd/detector/coco_eval.py [0:0]


def loadRes(self, resFile):
    """
    Load result file and return a result api object.
    :param   resFile (str)     : file name of result file
    :return: res (obj)         : result api object
    """
    res = COCO()
    res.dataset['images'] = [img for img in self.dataset['images']]

    # print('Loading and preparing results...')
    # tic = time.time()
    if isinstance(resFile, torch._six.string_classes):
        anns = json.load(open(resFile))
    elif type(resFile) == np.ndarray:
        anns = self.loadNumpyAnnotations(resFile)
    else:
        anns = resFile
    assert type(anns) == list, 'results in not an array of objects'
    annsImgIds = [ann['image_id'] for ann in anns]
    assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \
        'Results do not correspond to current coco set'
    if 'caption' in anns[0]:
        imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns])
        res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds]
        for id, ann in enumerate(anns):
            ann['id'] = id + 1
    elif 'bbox' in anns[0] and not anns[0]['bbox'] == []:
        res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
        for id, ann in enumerate(anns):
            bb = ann['bbox']
            x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]]
            if 'segmentation' not in ann:
                ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
            ann['area'] = bb[2] * bb[3]
            ann['id'] = id + 1
            ann['iscrowd'] = 0
    elif 'segmentation' in anns[0]:
        res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
        for id, ann in enumerate(anns):
            # now only support compressed RLE format as segmentation results
            ann['area'] = maskUtils.area(ann['segmentation'])
            if 'bbox' not in ann:
                ann['bbox'] = maskUtils.toBbox(ann['segmentation'])
            ann['id'] = id + 1
            ann['iscrowd'] = 0
    elif 'keypoints' in anns[0]:
        res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
        for id, ann in enumerate(anns):
            s = ann['keypoints']
            x = s[0::3]
            y = s[1::3]
            x1, x2, y1, y2 = np.min(x), np.max(x), np.min(y), np.max(y)
            ann['area'] = (x2 - x1) * (y2 - y1)
            ann['id'] = id + 1
            ann['bbox'] = [x1, y1, x2 - x1, y2 - y1]
    # print('DONE (t={:0.2f}s)'.format(time.time()- tic))

    res.dataset['annotations'] = anns
    createIndex(res)
    return res