data.py [255:287]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                if self.weighted_gauss:
                    chis_list = interpolated_sample_normal(
                        self.db,
                        angles[idx, 1],
                        angles[idx, 2],
                        res[idx],
                        neg_sample,
                        uniform=self.uniform,
                    )
                elif self.gmm:
                    chis_list = mixture_sample_normal(
                        self.db,
                        angles[idx, 1],
                        angles[idx, 2],
                        res[idx],
                        neg_sample,
                        uniform=self.uniform,
                    )
                else:
                    chis_list = exhaustive_sample(
                        self.db,
                        angles[idx, 1],
                        angles[idx, 2],
                        res[idx],
                        tresh=tresh,
                        chi_mean=self.chi_mean,
                    )

                    if len(chis_list) < neg_sample:
                        repeat = neg_sample // len(chis_list) + 1
                        chis_list = chis_list * repeat

                    random.shuffle(chis_list)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



data.py [298:330]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                if self.weighted_gauss:
                    chis_list = interpolated_sample_normal(
                        self.db,
                        angles[idx, 1],
                        angles[idx, 2],
                        res[idx],
                        neg_sample,
                        uniform=self.uniform,
                    )
                elif self.gmm:
                    chis_list = mixture_sample_normal(
                        self.db,
                        angles[idx, 1],
                        angles[idx, 2],
                        res[idx],
                        neg_sample,
                        uniform=self.uniform,
                    )
                else:
                    chis_list = exhaustive_sample(
                        self.db,
                        angles[idx, 1],
                        angles[idx, 2],
                        res[idx],
                        tresh=tresh,
                        chi_mean=self.chi_mean,
                    )

                    if len(chis_list) < neg_sample:
                        repeat = neg_sample // len(chis_list) + 1
                        chis_list = chis_list * repeat

                    random.shuffle(chis_list)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



