data.py [428:440]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    max_size = max([ne.size(0) for ne in node_embed])

    neg_sample_size = node_embed_neg[0].size(0)
    sizes = list(node_embed_neg[0].size())
    node_embed_batch = torch.zeros(*(len(node_embed), max_size, node_embed[0].size(1)))
    node_embed_neg_batch = (node_embed_batch.clone()[:, None, :, :]).repeat(1, sizes[0], 1, 1)

    for i, (ne, neg) in enumerate(zip(node_embed, node_embed_neg)):
        node_embed_batch[i, : ne.size(0), :] = ne
        node_embed_neg_batch[i, :, : neg.size(1), :] = neg

    sizes = list(node_embed_neg_batch.size())
    node_embed_neg_batch = node_embed_neg_batch.view(-1, *sizes[2:])
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



data.py [447:459]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    max_size = max([ne.size(0) for ne in node_embed])

    neg_sample_size = node_embed_neg[0].size(0)
    sizes = list(node_embed_neg[0].size())
    node_embed_batch = torch.zeros(*(len(node_embed), max_size, node_embed[0].size(1)))
    node_embed_neg_batch = (node_embed_batch.clone()[:, None, :, :]).repeat(1, sizes[0], 1, 1)

    for i, (ne, neg) in enumerate(zip(node_embed, node_embed_neg)):
        node_embed_batch[i, : ne.size(0), :] = ne
        node_embed_neg_batch[i, :, : neg.size(1), :] = neg

    sizes = list(node_embed_neg_batch.size())
    node_embed_neg_batch = node_embed_neg_batch.view(-1, *sizes[2:])
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



