in scripts/extract_saliency.py [0:0]
def create_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--pdb_name", type=str, required=True)
parser.add_argument("--results_file", type=pathlib.Path, required=True)
parser.add_argument("--model_file", type=pathlib.Path, default=None)
parser.add_argument(
"--cache_dir",
type=pathlib.Path,
default=pathlib.Path(MMCIF_PATH + "/mmCIF/"),
)
# Transformer arguments
parser.add_argument(
"--encoder_layers",
type=int,
default=6,
help="number of layers to apply the transformer on",
)
parser.add_argument("--dropout", type=float, default=0.0, help="chance of dropping out a unit")
parser.add_argument(
"--relu_dropout", type=float, default=0.0, help="chance of dropping out a relu unit"
)
parser.add_argument(
"--encoder_normalize_after",
action="store_false",
dest="encoder_normalize_before",
help="whether to normalize outputs before",
)
parser.add_argument(
"--encoder_attention_heads",
type=int,
default=8,
help="number of heads of attention to use",
)
parser.add_argument(
"--attention_dropout", type=float, default=0.0, help="dropout rate of attention"
)
parser.add_argument(
"--encoder_ffn_embed_dim",
type=int,
default=1024,
help="hidden dimension to use in transformer",
)
parser.add_argument(
"--encoder_embed_dim", type=int, default=256, help="original embed dimension of element"
)
parser.add_argument("--max_size", type=int, default=64, help="maximum size of time series")
return parser