in train.py [0:0]
def main():
# parse arguments
parser = argparse.ArgumentParser()
parser = add_args(parser)
FLAGS = parser.parse_args()
# convert to easy_dict; this is what is saved with model checkpoints and used in logic above
keys = dir(FLAGS)
flags_dict = EasyDict()
for key in keys:
if "__" not in key:
flags_dict[key] = getattr(FLAGS, key)
# postprocess arguments
flags_dict.train = not flags_dict.no_train
flags_dict.cuda = not flags_dict.no_cuda
flags_dict.encoder_normalize_before = not flags_dict.no_encoder_normalize_before
flags_dict.augment = not flags_dict.no_augment
if not flags_dict.train:
flags_dict.multisample = 1
# Launch the job (optionally in a distributed manner)
if flags_dict.gpus > 1:
mp.spawn(main_single, nprocs=flags_dict.gpus, args=(flags_dict,))
else:
main_single(0, flags_dict)