def train_model()

in pycls/core/trainer.py [0:0]


def train_model():
    """Trains the model."""
    # Setup training/testing environment
    setup_env()
    # Construct the model, ema, loss_fun, and optimizer
    model = setup_model()
    ema = deepcopy(model)
    loss_fun = builders.build_loss_fun().cuda()
    optimizer = optim.construct_optimizer(model)
    # Load checkpoint or initial weights
    start_epoch = 0
    if cfg.TRAIN.AUTO_RESUME and cp.has_checkpoint():
        file = cp.get_last_checkpoint()
        epoch = cp.load_checkpoint(file, model, ema, optimizer)[0]
        logger.info("Loaded checkpoint from: {}".format(file))
        start_epoch = epoch + 1
    elif cfg.TRAIN.WEIGHTS:
        train_weights = get_weights_file(cfg.TRAIN.WEIGHTS)
        cp.load_checkpoint(train_weights, model, ema)
        logger.info("Loaded initial weights from: {}".format(train_weights))
    # Create data loaders and meters
    train_loader = data_loader.construct_train_loader()
    test_loader = data_loader.construct_test_loader()
    train_meter = meters.TrainMeter(len(train_loader))
    test_meter = meters.TestMeter(len(test_loader))
    ema_meter = meters.TestMeter(len(test_loader), "test_ema")
    # Create a GradScaler for mixed precision training
    scaler = amp.GradScaler(enabled=cfg.TRAIN.MIXED_PRECISION)
    # Compute model and loader timings
    if start_epoch == 0 and cfg.PREC_TIME.NUM_ITER > 0:
        benchmark.compute_time_full(model, loss_fun, train_loader, test_loader)
    # Perform the training loop
    logger.info("Start epoch: {}".format(start_epoch + 1))
    for cur_epoch in range(start_epoch, cfg.OPTIM.MAX_EPOCH):
        # Train for one epoch
        params = (train_loader, model, ema, loss_fun, optimizer, scaler, train_meter)
        train_epoch(*params, cur_epoch)
        # Compute precise BN stats
        if cfg.BN.USE_PRECISE_STATS:
            net.compute_precise_bn_stats(model, train_loader)
            net.compute_precise_bn_stats(ema, train_loader)
        # Evaluate the model
        test_epoch(test_loader, model, test_meter, cur_epoch)
        test_epoch(test_loader, ema, ema_meter, cur_epoch)
        test_err = test_meter.get_epoch_stats(cur_epoch)["top1_err"]
        ema_err = ema_meter.get_epoch_stats(cur_epoch)["top1_err"]
        # Save a checkpoint
        file = cp.save_checkpoint(model, ema, optimizer, cur_epoch, test_err, ema_err)
        logger.info("Wrote checkpoint to: {}".format(file))