def step()

in pytext/optimizer/madgrad.py [0:0]


    def step(self, closure=None, **kwargs) -> Optional[float]:
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            eps = group["eps"]
            k = group["k"]
            lr = group["lr"] + eps
            decay = group["weight_decay"]
            momentum = group["momentum"]

            ck = 1 - momentum
            lamb = lr * math.pow(k + 1, 0.5)

            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad.data
                state = self.state[p]

                if momentum != 0.0 and grad.is_sparse:
                    raise RuntimeError(
                        "momentum != 0 is not compatible with sparse gradients"
                    )

                grad_sum_sq = state["grad_sum_sq"]
                s = state["s"]

                # Apply weight decay
                if decay != 0:
                    if grad.is_sparse:
                        raise RuntimeError(
                            "weight_decay option is not compatible with sparse gradients"
                        )

                    grad.add_(p.data, alpha=decay)

                if grad.is_sparse:
                    grad = grad.coalesce()
                    grad_val = grad._values()

                    p_masked = p.sparse_mask(grad)
                    grad_sum_sq_masked = grad_sum_sq.sparse_mask(grad)
                    s_masked = s.sparse_mask(grad)

                    # Compute x_0 from other known quantities
                    rms_masked_vals = grad_sum_sq_masked._values().pow(1 / 3).add_(eps)
                    x0_masked_vals = p_masked._values().addcdiv(
                        s_masked._values(), rms_masked_vals, value=1
                    )

                    # Dense + sparse op
                    grad_sq = grad * grad
                    grad_sum_sq.add_(grad_sq, alpha=lamb)
                    grad_sum_sq_masked.add_(grad_sq, alpha=lamb)

                    rms_masked_vals = grad_sum_sq_masked._values().pow_(1 / 3).add_(eps)

                    s.add_(grad, alpha=lamb)
                    s_masked._values().add_(grad_val, alpha=lamb)

                    # update masked copy of p
                    p_kp1_masked_vals = x0_masked_vals.addcdiv(
                        s_masked._values(), rms_masked_vals, value=-1
                    )
                    # Copy updated masked p to dense p using an add operation
                    p_masked._values().add_(p_kp1_masked_vals, alpha=-1)
                    p.data.add_(p_masked, alpha=-1)
                else:
                    if momentum == 0:
                        # Compute x_0 from other known quantities
                        rms = grad_sum_sq.pow(1 / 3).add_(eps)
                        x0 = p.data.addcdiv(s, rms, value=1)
                    else:
                        x0 = state["x0"]

                    # Accumulate second moments
                    grad_sum_sq.addcmul_(grad, grad, value=lamb)
                    rms = grad_sum_sq.pow(1 / 3).add_(eps)

                    # Update s
                    s.data.add_(grad, alpha=lamb)

                    # Step
                    if momentum == 0:
                        p.data.copy_(x0.addcdiv(s, rms, value=-1))
                    else:
                        z = x0.addcdiv(s, rms, value=-1)

                        # p is a moving average of z
                        p.data.mul_(1 - ck).add_(z, alpha=ck)

            group["k"] = group["k"] + 1
        return loss