def step()

in pytext/optimizer/adabelief.py [0:0]


    def step(self, closure=None, **kwargs):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError(
                        "AdaBelief does not support sparse gradients, please consider SparseAdam instead"
                    )
                amsgrad = group["amsgrad"]

                state = self.state[p]

                beta1, beta2 = group["betas"]

                # State initialization
                if len(state) == 0:
                    state["rho_inf"] = 2.0 / (1.0 - beta2) - 1.0
                    state["step"] = 0
                    # Exponential moving average of gradient values
                    state["exp_avg"] = torch.zeros_like(
                        p.data, memory_format=torch.preserve_format
                    )
                    # Exponential moving average of squared gradient values
                    state["exp_avg_var"] = torch.zeros_like(
                        p.data, memory_format=torch.preserve_format
                    )
                    if amsgrad:
                        # Maintains max of all exp. moving avg. of sq. grad. values
                        state["max_exp_avg_var"] = torch.zeros_like(
                            p.data, memory_format=torch.preserve_format
                        )

                # get current state variable
                exp_avg, exp_avg_var = state["exp_avg"], state["exp_avg_var"]

                state["step"] += 1
                bias_correction1 = 1 - beta1 ** state["step"]
                bias_correction2 = 1 - beta2 ** state["step"]

                # perform weight decay, check if decoupled weight decay
                if self.weight_decouple:
                    if not self.fixed_decay:
                        p.data.mul_(1.0 - group["lr"] * group["weight_decay"])
                    else:
                        p.data.mul_(1.0 - group["weight_decay"])
                else:
                    if group["weight_decay"] != 0:
                        grad.add_(group["weight_decay"], p.data)

                # Update first and second moment running average
                exp_avg.mul_(beta1).add_(1 - beta1, grad)
                grad_residual = grad - exp_avg
                exp_avg_var.mul_(beta2).addcmul_(
                    1 - beta2, grad_residual, grad_residual
                )

                if amsgrad:
                    max_exp_avg_var = state["max_exp_avg_var"]
                    # Maintains the maximum of all 2nd moment running avg. till now
                    torch.max(max_exp_avg_var, exp_avg_var, out=max_exp_avg_var)

                    # Use the max. for normalizing running avg. of gradient
                    denom = (
                        max_exp_avg_var.add_(group["eps"]).sqrt()
                        / math.sqrt(bias_correction2)
                    ).add_(group["eps"])
                else:
                    denom = (
                        exp_avg_var.add_(group["eps"]).sqrt()
                        / math.sqrt(bias_correction2)
                    ).add_(group["eps"])

                if not self.rectify:
                    # Default update
                    step_size = group["lr"] / bias_correction1
                    p.data.addcdiv_(-step_size, exp_avg, denom)

                else:  # Rectified update
                    # calculate rho_t
                    state["rho_t"] = state["rho_inf"] - 2 * state[
                        "step"
                    ] * beta2 ** state["step"] / (1.0 - beta2 ** state["step"])

                    if (
                        state["rho_t"] > 4
                    ):  # perform Adam style update if variance is small
                        rho_inf, rho_t = state["rho_inf"], state["rho_t"]
                        rt = (
                            (rho_t - 4.0)
                            * (rho_t - 2.0)
                            * rho_inf
                            / (rho_inf - 4.0)
                            / (rho_inf - 2.0)
                            / rho_t
                        )
                        rt = math.sqrt(rt)

                        step_size = rt * group["lr"] / bias_correction1

                        p.data.addcdiv_(-step_size, exp_avg, denom)

                    else:  # perform SGD style update
                        p.data.add_(-group["lr"], exp_avg)

        return loss