def step()

in pytorchvideo_trainer/pytorchvideo_trainer/module/optimizer.py [0:0]


    def step(self, closure=None):
        with torch.no_grad():
            weight_decays = []
            for group in self.optim.param_groups:
                # absorb weight decay control from optimizer
                weight_decay = group["weight_decay"] if "weight_decay" in group else 0
                weight_decays.append(weight_decay)
                apply_LARS = group["apply_LARS"] if "apply_LARS" in group else True
                if not apply_LARS:
                    continue
                group["weight_decay"] = 0
                for p in group["params"]:
                    if p.grad is None:
                        continue
                    if self.ignore_1d_param and p.ndim == 1:  # ignore bias
                        continue
                    param_norm = torch.norm(p.data)
                    grad_norm = torch.norm(p.grad.data)

                    if param_norm != 0 and grad_norm != 0:
                        # calculate adaptive lr + weight decay
                        adaptive_lr = (
                            self.trust_coefficient
                            * (param_norm)
                            / (grad_norm + param_norm * weight_decay + self.eps)
                        )

                        # clip learning rate for LARS
                        if self.clip:
                            # calculation of adaptive_lr so that when multiplied
                            # by lr it equals `min(adaptive_lr, lr)`
                            adaptive_lr = min(adaptive_lr / group["lr"], 1)

                        p.grad.data += weight_decay * p.data
                        p.grad.data *= adaptive_lr

        self.optim.step()
        # return weight decay control to optimizer
        for i, group in enumerate(self.optim.param_groups):
            group["weight_decay"] = weight_decays[i]