in train-logistic.py [0:0]
def get_parser():
"""
Generate a parameters parser.
"""
# parse parameters
parser = argparse.ArgumentParser(description='Language transfer')
# main parameters
parser.add_argument("--dump_path", type=str, default="",
help="Experiment dump path")
parser.add_argument("--exp_name", type=str, default="bypass",
help="Experiment name")
parser.add_argument("--save_periodic", type=int, default=0,
help="Save the model periodically (0 to disable)")
parser.add_argument("--exp_id", type=str, default="",
help="Experiment ID")
parser.add_argument("--nb_workers", type=int, default=10,
help="Number of workers")
parser.add_argument("--fp16", type=bool_flag, default=False,
help='Run model with float16')
# dataset
parser.add_argument("--dataset", type=str, default="cifar10",
help="Dataset (cifar10)")
# model type
parser.add_argument("--architecture", type=str, default="myresnet2",
help="Architecture (resnet18, resnet34, resnet50, resnet101, resnet152)")
# parser.add_argument("--non_linearity", type=str, default="relu",
# help="Non linearity")
parser.add_argument("--from_ckpt", type=str, required=True)
parser.add_argument("--train_path", type=str, default="vanilla_train")
parser.add_argument("--num_classes", type=int, default=-1,
help="Number of subclasses to use")
# training parameters
parser.add_argument("--optimizer", type=str, default="sgd,lr=0.1-0.01-0.001,momentum=0.9,weight_decay=0.0001",
help="Optimizer (SGD / RMSprop / Adam, etc.)")
parser.add_argument("--batch_size", type=int, default=256,
help="Number of sentences per batch")
parser.add_argument("--epochs", type=int, default=90,
help="Number of epochs")
parser.add_argument("--stopping_criterion", type=str, default="",
help="Stopping criterion, and number of non-increase before stopping the experiment")
parser.add_argument("--validation_metrics", type=str, default="",
help="Validation metrics")
parser.add_argument("--train_transform", choices=["random", "flip", "center"], default="random",
help="Transformation applied to training images")
parser.add_argument("--seed", type=int, default=0,
help="Random seed")
# evaluation
parser.add_argument("--eval_only", type=bool_flag, default=False,
help="Only run evaluations")
# debug
parser.add_argument("--debug_train", type=bool_flag, default=False,
help="Use valid sets for train sets (faster loading)")
parser.add_argument("--debug_slurm", type=bool_flag, default=False,
help="Debug from a SLURM job")
parser.add_argument("--debug", help="Enable all debug flags",
action="store_true")
# multi-gpu / multi-node
parser.add_argument("--local_rank", type=int, default=-1,
help="Multi-GPU - Local rank")
parser.add_argument("--master_port", type=int, default=-1,
help="Master port (for multi-node SLURM jobs)")
return parser