pytorch_transformers/tokenization_gpt2.py [119:195]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
        bpe_merges = [tuple(merge.split()) for merge in bpe_data]
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}

        # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
        self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")

    @property
    def vocab_size(self):
        return len(self.encoder)

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        self.cache[token] = word
        return word

    def _tokenize(self, text):
        """ Tokenize a string. """
        bpe_tokens = []
        for token in re.findall(self.pat, text):
            if sys.version_info[0] == 2:
                token = ''.join(self.byte_encoder[ord(b)] for b in token)
            else:
                token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
            bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' '))
        return bpe_tokens

    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.encoder.get(token, self.encoder.get(self.unk_token))

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        return self.decoder.get(index)

    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
        text = ''.join(tokens)
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
        return text
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



pytorch_transformers/tokenization_roberta.py [88:164]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
        bpe_merges = [tuple(merge.split()) for merge in bpe_data]
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}

        # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
        self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")

    @property
    def vocab_size(self):
        return len(self.encoder)

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        self.cache[token] = word
        return word

    def _tokenize(self, text):
        """ Tokenize a string. """
        bpe_tokens = []
        for token in re.findall(self.pat, text):
            if sys.version_info[0] == 2:
                token = ''.join(self.byte_encoder[ord(b)] for b in token)
            else:
                token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
            bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' '))
        return bpe_tokens

    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.encoder.get(token, self.encoder.get(self.unk_token))

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        return self.decoder.get(index)

    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
        text = ''.join(tokens)
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
        return text
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



