def __init__()

in pytorch_transformers/modeling_xlnet.py [0:0]


    def __init__(self,
                 vocab_size_or_config_json_file=32000,
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
                 ff_activation="gelu",
                 untie_r=True,
                 attn_type="bi",

                 initializer_range=0.02,
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
                 same_length=False,

                 finetuning_task=None,
                 num_labels=2,
                 summary_type='last',
                 summary_use_proj=True,
                 summary_activation='tanh',
                 summary_last_dropout=0.1,
                 start_n_top=5,
                 end_n_top=5,
                 **kwargs):
        """Constructs XLNetConfig.
        """
        super(XLNetConfig, self).__init__(**kwargs)

        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.n_token = vocab_size_or_config_json_file
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
            self.attn_type = attn_type

            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps

            self.dropout = dropout
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length

            self.finetuning_task = finetuning_task
            self.num_labels = num_labels
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
            self.summary_last_dropout = summary_last_dropout
            self.start_n_top = start_n_top
            self.end_n_top = end_n_top
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             " or the path to a pretrained model config file (str)")