def forward()

in pytorch_transformers/modeling_xlm.py [0:0]


    def forward(self, input_ids, lengths=None, position_ids=None, langs=None,
                token_type_ids=None, attention_mask=None, cache=None, head_mask=None):  # src_enc=None, src_len=None, 
        if lengths is None:
            lengths = (input_ids != self.pad_index).sum(dim=1).long()
        # mask = input_ids != self.pad_index

        # check inputs
        bs, slen = input_ids.size()
        assert lengths.size(0) == bs
        assert lengths.max().item() <= slen
        # input_ids = input_ids.transpose(0, 1)  # batch size as dimension 0
        # assert (src_enc is None) == (src_len is None)
        # if src_enc is not None:
        #     assert self.is_decoder
        #     assert src_enc.size(0) == bs

        # generate masks
        mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
        # if self.is_decoder and src_enc is not None:
        #     src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]

        # position_ids
        if position_ids is None:
            position_ids = input_ids.new((slen,)).long()
            position_ids = torch.arange(slen, out=position_ids).unsqueeze(0)
        else:
            assert position_ids.size() == (bs, slen)  # (slen, bs)
            # position_ids = position_ids.transpose(0, 1)

        # langs
        if langs is not None:
            assert langs.size() == (bs, slen)  # (slen, bs)
            # langs = langs.transpose(0, 1)

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.n_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.n_layers

        # do not recompute cached elements
        if cache is not None:
            _slen = slen - cache['slen']
            input_ids = input_ids[:, -_slen:]
            position_ids = position_ids[:, -_slen:]
            if langs is not None:
                langs = langs[:, -_slen:]
            mask = mask[:, -_slen:]
            attn_mask = attn_mask[:, -_slen:]

        # embeddings
        tensor = self.embeddings(input_ids)
        tensor = tensor + self.position_embeddings(position_ids).expand_as(tensor)
        if langs is not None:
            tensor = tensor + self.lang_embeddings(langs)
        if token_type_ids is not None:
            tensor = tensor + self.embeddings(token_type_ids)
        tensor = self.layer_norm_emb(tensor)
        tensor = F.dropout(tensor, p=self.dropout, training=self.training)
        tensor *= mask.unsqueeze(-1).to(tensor.dtype)

        # transformer layers
        hidden_states = ()
        attentions = ()
        for i in range(self.n_layers):
            if self.output_hidden_states:
                hidden_states = hidden_states + (tensor,)

            # self attention
            attn_outputs = self.attentions[i](tensor, attn_mask, cache=cache, head_mask=head_mask[i])
            attn = attn_outputs[0]
            if self.output_attentions:
                attentions = attentions + (attn_outputs[1],)
            attn = F.dropout(attn, p=self.dropout, training=self.training)
            tensor = tensor + attn
            tensor = self.layer_norm1[i](tensor)

            # encoder attention (for decoder only)
            # if self.is_decoder and src_enc is not None:
            #     attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
            #     attn = F.dropout(attn, p=self.dropout, training=self.training)
            #     tensor = tensor + attn
            #     tensor = self.layer_norm15[i](tensor)

            # FFN
            tensor = tensor + self.ffns[i](tensor)
            tensor = self.layer_norm2[i](tensor)
            tensor *= mask.unsqueeze(-1).to(tensor.dtype)

        # Add last hidden state
        if self.output_hidden_states:
            hidden_states = hidden_states + (tensor,)

        # update cache length
        if cache is not None:
            cache['slen'] += tensor.size(1)

        # move back sequence length to dimension 0
        # tensor = tensor.transpose(0, 1)

        outputs = (tensor,)
        if self.output_hidden_states:
            outputs = outputs + (hidden_states,)
        if self.output_attentions:
            outputs = outputs + (attentions,)
        return outputs  # outputs, (hidden_states), (attentions)