def _update_priority()

in rlmeta/core/replay_buffer.py [0:0]


    def _update_priority(self, index: Union[int, Tensor],
                         priority: Union[float, Tensor]) -> None:
        priority += self.eps
        if isinstance(priority, float):
            self._max_priority = max(self._max_priority, priority)
        else:
            self._max_priority = max(self._max_priority, priority.max().item())
        priority = priority**self.alpha

        if isinstance(priority, np.ndarray):
            priority = priority.astype(self.priority_type)
        elif isinstance(priority, torch.Tensor):
            priority = priority.to(
                data_utils.numpy_dtype_to_torch(self.priority_type))

        self._sum_tree[index] = priority
        self._min_tree[index] = priority