in rlalgos/ppo/discrete_ppo.py [0:0]
def run(self):
self.learning_model = self._create_model()
self.agent = self._create_agent(
n_actions=self.n_actions, model=self.learning_model
)
# We create a batcher dedicated to evaluation
model = copy.deepcopy(self.learning_model)
self.evaluation_batcher = RL_Batcher(
n_timesteps=self.config["max_episode_steps"],
create_agent=self._create_agent,
create_env=self._create_env,
env_args={
"n_envs": self.config["n_evaluation_envs"],
"max_episode_steps": self.config["max_episode_steps"],
"env_name": self.config["env_name"],
},
agent_args={"n_actions": self.n_actions, "model": model},
n_processes=self.config["n_evaluation_processes"],
seeds=[
self.config["env_seed"] + k * 10
for k in range(self.config["n_evaluation_processes"])
],
agent_info=DictTensor({"stochastic": torch.tensor([True])}),
env_info=DictTensor({}),
)
model = copy.deepcopy(self.learning_model)
self.train_batcher = RL_Batcher(
n_timesteps=self.config["ppo_timesteps"],
create_agent=self._create_agent,
create_env=self._create_train_env,
env_args={
"n_envs": self.config["n_envs"],
"max_episode_steps": self.config["max_episode_steps"],
"env_name": self.config["env_name"],
},
agent_args={"n_actions": self.n_actions, "model": model},
n_processes=self.config["n_processes"],
seeds=[
self.config["env_seed"] + k * 10
for k in range(self.config["n_processes"])
],
agent_info=DictTensor({"stochastic": torch.tensor([True])}),
env_info=DictTensor({}),
)
# Creation of the optimizer
optimizer = torch.optim.Adam(
self.learning_model.parameters(), lr=self.config["lr"]
)
# Training Loop:
_start_time = time.time()
self.iteration = 0
# #We launch the evaluation batcher (in deterministic mode)
n_episodes = (
self.config["n_evaluation_processes"] * self.config["n_evaluation_envs"]
)
agent_info = DictTensor(
{"stochastic": torch.tensor([False]).repeat(n_episodes)}
)
self.evaluation_batcher.reset(agent_info=agent_info)
self.evaluation_batcher.execute()
self.evaluation_iteration = self.iteration
# Initialize the training batcher such that agents will start to acqire pieces of episodes
self.train_batcher.update(self.learning_model.state_dict())
n_episodes = self.config["n_envs"] * self.config["n_processes"]
agent_info = DictTensor({"stochastic": torch.tensor([True]).repeat(n_episodes)})
self.train_batcher.reset(agent_info=agent_info)
while time.time() - _start_time < self.config["time_limit"]:
self.train_batcher.execute()
trajectories, n = self.train_batcher.get()
assert n == self.config["n_envs"] * self.config["n_processes"]
avg_reward = 0
for K in range(self.config["k_epochs"]):
optimizer.zero_grad()
dt = self.get_loss(trajectories)
[
self.logger.add_scalar("loss/" + k, dt[k].item(), self.iteration)
for k in dt.keys()
]
# Computation of final loss
ld = self.config["coef_critic"] * dt["critic_loss"]
lr = self.config["coef_ppo"] * dt["a2c_loss"]
le = self.config["coef_entropy"] * dt["entropy_loss"]
floss = ld - le - lr
floss.backward()
if self.config["clip_grad"] > 0:
n = torch.nn.utils.clip_grad_norm_(
self.learning_model.parameters(), self.config["clip_grad"]
)
self.logger.add_scalar("grad_norm", n.item(), self.iteration)
optimizer.step()
self.iteration += 1
cpu_parameters = self._state_dict(self.learning_model, torch.device("cpu"))
self.train_batcher.update(cpu_parameters)
self.iteration += 1
evaluation_trajectories, n = self.evaluation_batcher.get(blocking=False)
if not evaluation_trajectories is None: # trajectories are available
# Compute the cumulated reward
cumulated_reward = (
(
evaluation_trajectories.trajectories["_observation/reward"]
* evaluation_trajectories.trajectories.mask()
)
.sum(1)
.mean()
)
self.logger.add_scalar(
"evaluation_reward",
cumulated_reward.item(),
self.evaluation_iteration,
)
print(
"At iteration %d, reward is %f"
% (self.evaluation_iteration, cumulated_reward.item())
)
# We reexecute the evaluation batcher (with same value of agent_info and same number of episodes)
self.evaluation_batcher.update(self.learning_model.state_dict())
self.evaluation_iteration = self.iteration
n_episodes = (
self.config["n_evaluation_processes"]
* self.config["n_evaluation_envs"]
)
agent_info = DictTensor(
{"stochastic": torch.tensor([False]).repeat(n_episodes)}
)
self.evaluation_batcher.reset(agent_info=agent_info)
self.evaluation_batcher.execute()