in rlalgos/deprecated/sac/sac.py [0:0]
def run(self):
self.replay_buffer = ReplayBuffer(self.config["replay_buffer_size"])
device = torch.device(self.config["learner_device"])
self.learning_model.to(device)
self.q1.to(device)
self.q2.to(device)
self.target_q1.to(device)
self.target_q2.to(device)
optimizer = torch.optim.Adam(
self.learning_model.parameters(), lr=self.config["lr"]
)
optimizer_q1 = torch.optim.Adam(self.q1.parameters(), lr=self.config["lr"])
optimizer_q2 = torch.optim.Adam(self.q2.parameters(), lr=self.config["lr"])
self.train_batcher.update(
self._state_dict(self.learning_model, torch.device("cpu"))
)
self.evaluation_batcher.update(
self._state_dict(self.learning_model, torch.device("cpu"))
)
n_episodes = self.config["n_envs"] * self.config["n_threads"]
self.train_batcher.reset(
agent_info=DictTensor({"stochastic": torch.zeros(n_episodes).eq(0.0)})
)
logging.info("Sampling initial transitions")
n_iterations = int(
self.config["n_starting_transitions"]
/ (n_episodes * self.config["batch_timesteps"])
)
for k in range(n_iterations):
self.train_batcher.execute()
trajectories = self.train_batcher.get()
self.replay_buffer.push(trajectories)
print("replay_buffer_size = ", self.replay_buffer.size())
n_episodes = self.config["n_evaluation_rollouts"]
stochastic = torch.tensor(
[self.config["evaluation_mode"] == "stochastic"]
).repeat(n_episodes)
self.evaluation_batcher.execute(
agent_info=DictTensor({"stochastic": stochastic}), n_episodes=n_episodes
)
logging.info("Starting Learning")
_start_time = time.time()
logging.info("Learning")
while time.time() - _start_time < self.config["time_limit"]:
self.train_batcher.execute()
trajectories = self.train_batcher.get()
self.replay_buffer.push(trajectories)
self.logger.add_scalar(
"replay_buffer_size", self.replay_buffer.size(), self.iteration
)
# avg_reward = 0
for k in range(self.config["n_batches_per_epochs"]):
transitions = self.replay_buffer.sample(n=self.config["size_batches"])
# print(dt)
dt, transitions = self.get_q_loss(transitions, device)
[
self.logger.add_scalar(k, dt[k].item(), self.iteration)
for k in dt.keys()
]
optimizer_q1.zero_grad()
dt["q1_loss"].backward()
optimizer_q1.step()
optimizer_q2.zero_grad()
dt["q2_loss"].backward()
optimizer_q2.step()
optimizer.zero_grad()
dt = self.get_policy_loss(transitions)
[
self.logger.add_scalar(k, dt[k].item(), self.iteration)
for k in dt.keys()
]
dt["policy_loss"].backward()
optimizer.step()
tau = self.config["tau"]
self.soft_update_params(self.q1, self.target_q1, tau)
self.soft_update_params(self.q2, self.target_q2, tau)
self.iteration += 1
self.train_batcher.update(
self._state_dict(self.learning_model, torch.device("cpu"))
)
self.evaluate()