def run()

in tutorial/deprecated/tutorial_from_reinforce_to_a2c_s/a2c.py [0:0]


    def run(self):
        # Instantiate the learning model abd the baseline model
        action_model = ActionModel(self.obs_dim, self.n_actions, 16)
        critic_model = CriticModel(self.obs_dim, 16)
        self.learning_model = Model(action_model, critic_model)
        self.agent = self._create_agent(
            n_actions=self.n_actions, model=self.learning_model
        )

        # We create a batcher dedicated to evaluation
        model = copy.deepcopy(self.learning_model)
        self.evaluation_batcher = S_EpisodeBatcher(
            n_timesteps=self.config["max_episode_steps"],
            n_slots=self.config["n_evaluation_episodes"],
            create_agent=self._create_agent,
            create_env=self._create_env,
            env_args={
                "n_envs": self.config["n_envs"],
                "max_episode_steps": self.config["max_episode_steps"],
                "env_name": self.config["env_name"],
            },
            agent_args={"n_actions": self.n_actions, "model": model},
            n_threads=self.config["n_evaluation_threads"],
            seeds=[
                self.config["env_seed"] + k * 10
                for k in range(self.config["n_evaluation_threads"])
            ],
            agent_info=DictTensor(
                {"stochastic": torch.tensor([True]).repeat(self.config["n_envs"])}
            ),
            env_info=DictTensor({}),
        )

        # Creation of the batcher for sampling complete pieces of trajectories (i.e Batcher)
        # The batcher will sample n_threads*n_envs trajectories at each call
        # To have a fast batcher, we have to configure it with n_timesteps=self.config["max_episode_steps"]
        model = copy.deepcopy(self.learning_model)
        self.train_batcher = S_Batcher(
            n_timesteps=self.config["a2c_timesteps"],
            n_slots=self.config["n_envs"] * self.config["n_threads"],
            create_agent=self._create_agent,
            create_env=self._create_env,
            env_args={
                "n_envs": self.config["n_envs"],
                "max_episode_steps": self.config["max_episode_steps"],
                "env_name": self.config["env_name"],
            },
            agent_args={"n_actions": self.n_actions, "model": model},
            n_threads=self.config["n_threads"],
            seeds=[
                self.config["env_seed"] + k * 10
                for k in range(self.config["n_threads"])
            ],
            agent_info=DictTensor(
                {"stochastic": torch.tensor([True]).repeat(self.config["n_envs"])}
            ),
            env_info=DictTensor({}),
        )

        # Creation of the optimizer
        optimizer = torch.optim.RMSprop(
            self.learning_model.parameters(), lr=self.config["lr"]
        )

        # Training Loop:
        _start_time = time.time()
        self.iteration = 0

        # #We launch the evaluation batcher (in deterministic mode)
        n_episodes = self.config["n_evaluation_episodes"]
        agent_info = DictTensor(
            {"stochastic": torch.tensor([False]).repeat(n_episodes)}
        )
        self.evaluation_batcher.execute(n_episodes=n_episodes, agent_info=agent_info)
        self.evaluation_iteration = self.iteration

        # Initialize the training batcher such that agents will start to acqire pieces of episodes
        self.train_batcher.update(self.learning_model.state_dict())
        n_episodes = self.config["n_envs"] * self.config["n_threads"]
        agent_info = DictTensor({"stochastic": torch.tensor([True]).repeat(n_episodes)})
        self.train_batcher.reset(agent_info=agent_info)

        while time.time() - _start_time < self.config["time_limit"]:
            # Call the batcher to get a sample of trajectories

            # 2) We get the pieces of episodes
            self.train_batcher.execute()
            trajectories, info = self.train_batcher.get(blocking=True)
            if (
                trajectories is None
            ):  # All the agents have finished their jobs on the previous episodes:
                # Then, reset  again to start new episodes
                n_episodes = self.config["n_envs"] * self.config["n_threads"]
                agent_info = DictTensor(
                    {"stochastic": torch.tensor([True]).repeat(n_episodes)}
                )
                self.train_batcher.reset(agent_info=agent_info)
                self.train_batcher.execute()
                trajectories, info = self.train_batcher.get(blocking=True)

            # 3) Now, we compute the loss
            dt = self.get_loss(trajectories, info)
            [self.logger.add_scalar(k, dt[k].item(), self.iteration) for k in dt.keys()]

            # Computation of final loss
            ld = self.config["critic_coef"] * dt["critic_loss"]
            lr = self.config["a2c_coef"] * dt["a2c_loss"]
            le = self.config["entropy_coef"] * dt["entropy_loss"]

            floss = ld - le - lr
            floss = floss / n_episodes * trajectories.n_elems()

            optimizer.zero_grad()
            floss.backward()
            optimizer.step()

            # Update the train batcher with the updated model
            self.train_batcher.update(self.learning_model.state_dict())
            self.iteration += 1

            # We check the evaluation batcher
            evaluation_trajectories, info = self.evaluation_batcher.get(blocking=False)
            if not evaluation_trajectories is None:  # trajectories are available
                # Compute the cumulated reward
                cumulated_reward = (
                    (
                        evaluation_trajectories["_observation/reward"]
                        * evaluation_trajectories.mask()
                    )
                    .sum(1)
                    .mean()
                )
                self.logger.add_scalar(
                    "evaluation_reward",
                    cumulated_reward.item(),
                    self.evaluation_iteration,
                )
                print(
                    "At iteration %d, reward is %f"
                    % (self.evaluation_iteration, cumulated_reward.item())
                )
                # We reexecute the evaluation batcher (with same value of agent_info and same number of episodes)
                self.evaluation_batcher.update(self.learning_model.state_dict())
                self.evaluation_iteration = self.iteration
                self.evaluation_batcher.reexecute()

        self.train_batcher.close()
        self.evaluation_batcher.get()  # To wait for the last trajectories
        self.evaluation_batcher.close()
        self.logger.update_csv()  # To save as a CSV file in logdir
        self.logger.close()